YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    An Analysis of the Klemp and Durran Radiation Boundary Condition as Applied to Dissipative Internal Waves

    Source: Journal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 011::page 2394
    Author:
    Chini, Gregory P.
    ,
    Leibovich, Sidney
    DOI: 10.1175/1520-0485(2003)033<2394:AAOTKA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Numerical simulations of the oceanic (atmospheric) boundary layer are complicated by the need to specify appropriate ?outflow? or ?radiation? boundary conditions at the artificial lower (upper) boundary of the computational domain. If the boundary layer is stratified, particular care is necessary to insure that internal-gravity-wave disturbances generated within the domain are not artificially reflected by the computational boundary. A major advance was made almost 20 years ago by Klemp and Durran; their radiation condition relates the Fourier transformed pressure fluctuation to the Fourier transformed vertical-velocity perturbation along the artificial boundary. Because it is local in time, the Klemp and Durran (KD) condition is easily incorporated into a wide variety of numerical models for only a minor computational expense. Indeed, it has been widely used in the atmospheric and oceanic sciences communities. For simulations of dissipative systems, however, perturbation-flux conditions must also be specified at the artificial boundary?these are in addition to the KD condition (or some other constraint) on the normal velocity component at that boundary. This article considers the performance of the KD condition in conjunction with zero perturbation stress and zero perturbation buoyancy-flux conditions (?KDZ? conditions, collectively), because the latter are generally assumed to be appropriate for simulations of boundary layer phenomena. Analysis of the response of a weakly dissipative, uniformly stratified fluid to forcing concentrated at a given depth reveals two potentially serious drawbacks of the KDZ conditions. First, nonhydrostatic dynamics are not adequately treated by the KD condition, itself. Moreover, the imposition of zero perturbation-flux conditions causes artificial boundary layers to form along the outflow boundary. Although these boundary layers are passive, they are unlikely to be resolved in numerical simulations; thus, discretization of the KDZ conditions may cause further errors in the simulated internal-wave dynamics. A consistent set of boundary conditions for simulations of dissipative, stratified fluids is proposed.
    • Download: (222.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      An Analysis of the Klemp and Durran Radiation Boundary Condition as Applied to Dissipative Internal Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167231
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorChini, Gregory P.
    contributor authorLeibovich, Sidney
    date accessioned2017-06-09T14:56:00Z
    date available2017-06-09T14:56:00Z
    date copyright2003/11/01
    date issued2003
    identifier issn0022-3670
    identifier otherams-29948.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167231
    description abstractNumerical simulations of the oceanic (atmospheric) boundary layer are complicated by the need to specify appropriate ?outflow? or ?radiation? boundary conditions at the artificial lower (upper) boundary of the computational domain. If the boundary layer is stratified, particular care is necessary to insure that internal-gravity-wave disturbances generated within the domain are not artificially reflected by the computational boundary. A major advance was made almost 20 years ago by Klemp and Durran; their radiation condition relates the Fourier transformed pressure fluctuation to the Fourier transformed vertical-velocity perturbation along the artificial boundary. Because it is local in time, the Klemp and Durran (KD) condition is easily incorporated into a wide variety of numerical models for only a minor computational expense. Indeed, it has been widely used in the atmospheric and oceanic sciences communities. For simulations of dissipative systems, however, perturbation-flux conditions must also be specified at the artificial boundary?these are in addition to the KD condition (or some other constraint) on the normal velocity component at that boundary. This article considers the performance of the KD condition in conjunction with zero perturbation stress and zero perturbation buoyancy-flux conditions (?KDZ? conditions, collectively), because the latter are generally assumed to be appropriate for simulations of boundary layer phenomena. Analysis of the response of a weakly dissipative, uniformly stratified fluid to forcing concentrated at a given depth reveals two potentially serious drawbacks of the KDZ conditions. First, nonhydrostatic dynamics are not adequately treated by the KD condition, itself. Moreover, the imposition of zero perturbation-flux conditions causes artificial boundary layers to form along the outflow boundary. Although these boundary layers are passive, they are unlikely to be resolved in numerical simulations; thus, discretization of the KDZ conditions may cause further errors in the simulated internal-wave dynamics. A consistent set of boundary conditions for simulations of dissipative, stratified fluids is proposed.
    publisherAmerican Meteorological Society
    titleAn Analysis of the Klemp and Durran Radiation Boundary Condition as Applied to Dissipative Internal Waves
    typeJournal Paper
    journal volume33
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2003)033<2394:AAOTKA>2.0.CO;2
    journal fristpage2394
    journal lastpage2407
    treeJournal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian