YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Midlatitude–ENSO Teleconnection Mechanism via Baroclinically Unstable Long Rossby Waves

    Source: Journal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 009::page 1877
    Author:
    Galanti, Eli
    ,
    Tziperman, Eli
    DOI: 10.1175/1520-0485(2003)033<1877:AMTMVB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The possibility of generating decadal ENSO variability via an ocean teleconnection to the midlatitude Pacific is studied. This is done by analyzing the sensitivity of the equatorial stratification to midlatitude processes using an ocean general circulation model, the adjoint method, and a quasigeostrophic normal-mode stability analysis. It is found that, on timescales of 2?15 yr, the equatorial Pacific is most sensitive to midlatitude planetary Rossby waves traveling from the midlatitudes toward the western boundary and then to the equator. Those waves that propagate through baroclinically unstable parts of the subtropical gyre are amplified by the baroclinic instability and therefore dominate the midlatitude signal arriving at the equator. This result implies that decadal variability in the midlatitude Pacific would be efficiently transmitted to the equatorial Pacific from specific areas of the midlatitude Pacific that are baroclinically unstable, such as the near-equatorial edges of the subtropical gyres (15°N and 12°S). The Rossby waves that propagate via the baroclinically unstable areas are of the advective mode type, which follow the gyre circulation to some degree and arrive from as far as 25°N and 30°S in the east Pacific. It is shown that the baroclinic instability amplifying these waves involves critical layers due to the vertical shear of the subtropical gyre circulation, at depths of 150?200 m.
    • Download: (1.910Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Midlatitude–ENSO Teleconnection Mechanism via Baroclinically Unstable Long Rossby Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167195
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorGalanti, Eli
    contributor authorTziperman, Eli
    date accessioned2017-06-09T14:55:55Z
    date available2017-06-09T14:55:55Z
    date copyright2003/09/01
    date issued2003
    identifier issn0022-3670
    identifier otherams-29915.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167195
    description abstractThe possibility of generating decadal ENSO variability via an ocean teleconnection to the midlatitude Pacific is studied. This is done by analyzing the sensitivity of the equatorial stratification to midlatitude processes using an ocean general circulation model, the adjoint method, and a quasigeostrophic normal-mode stability analysis. It is found that, on timescales of 2?15 yr, the equatorial Pacific is most sensitive to midlatitude planetary Rossby waves traveling from the midlatitudes toward the western boundary and then to the equator. Those waves that propagate through baroclinically unstable parts of the subtropical gyre are amplified by the baroclinic instability and therefore dominate the midlatitude signal arriving at the equator. This result implies that decadal variability in the midlatitude Pacific would be efficiently transmitted to the equatorial Pacific from specific areas of the midlatitude Pacific that are baroclinically unstable, such as the near-equatorial edges of the subtropical gyres (15°N and 12°S). The Rossby waves that propagate via the baroclinically unstable areas are of the advective mode type, which follow the gyre circulation to some degree and arrive from as far as 25°N and 30°S in the east Pacific. It is shown that the baroclinic instability amplifying these waves involves critical layers due to the vertical shear of the subtropical gyre circulation, at depths of 150?200 m.
    publisherAmerican Meteorological Society
    titleA Midlatitude–ENSO Teleconnection Mechanism via Baroclinically Unstable Long Rossby Waves
    typeJournal Paper
    journal volume33
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2003)033<1877:AMTMVB>2.0.CO;2
    journal fristpage1877
    journal lastpage1888
    treeJournal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian