YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Why Anticyclones Can Split

    Source: Journal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 008::page 1579
    Author:
    Drijfhout, S. S.
    DOI: 10.1175/1520-0485(2003)033<1579:WACS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The question of whether anticyclones can split and break up is readdressed using a numerical, multilayer, primitive equation model. Applying the conservation of integrated angular momentum (IAM) to barotropic and baroclinic vortices, it has been argued that anticyclones can never split, no matter what their structure is. When an anticyclone splits, the IAM has to increase as the newly formed eddies are pushed away from their original center. Conservation of IAM prohibits such an increase. Several numerical simulations, however, have shown anticyclonic splitting. In a multilayer model, a vertical transport of IAM is possible. For counterrotating eddies (an anticyclone on top of a cyclone) it is easy to see that a vertical exchange of IAM allows the eddy to break up. For a compensated or weakly corotating eddy, breakup is only possible when, in addition to a vertical transport of IAM, in the deep layer(s) IAM is exchanged between the core of the vortex and the surrounding fluid. In the presence of a tilting interface, the pressure gradient associated with the sea surface height (SSH) anomaly, in particular its non-equivalent-barotropic part, drives the required exchanges. The non-equivalent-barotropic SSH anomaly is associated with the vertical phase lag of the most unstable eigenmode (m = 2), which develops when this mode gains energy by baroclinic energy conversion. The previous conclusion that anticyclones cannot split on their own should be revised to the following: anticyclones cannot split by barotropic processes alone?baroclinic instability is a necessary ingredient for splitting to occur.
    • Download: (365.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Why Anticyclones Can Split

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167174
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorDrijfhout, S. S.
    date accessioned2017-06-09T14:55:48Z
    date available2017-06-09T14:55:48Z
    date copyright2003/08/01
    date issued2003
    identifier issn0022-3670
    identifier otherams-29897.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167174
    description abstractThe question of whether anticyclones can split and break up is readdressed using a numerical, multilayer, primitive equation model. Applying the conservation of integrated angular momentum (IAM) to barotropic and baroclinic vortices, it has been argued that anticyclones can never split, no matter what their structure is. When an anticyclone splits, the IAM has to increase as the newly formed eddies are pushed away from their original center. Conservation of IAM prohibits such an increase. Several numerical simulations, however, have shown anticyclonic splitting. In a multilayer model, a vertical transport of IAM is possible. For counterrotating eddies (an anticyclone on top of a cyclone) it is easy to see that a vertical exchange of IAM allows the eddy to break up. For a compensated or weakly corotating eddy, breakup is only possible when, in addition to a vertical transport of IAM, in the deep layer(s) IAM is exchanged between the core of the vortex and the surrounding fluid. In the presence of a tilting interface, the pressure gradient associated with the sea surface height (SSH) anomaly, in particular its non-equivalent-barotropic part, drives the required exchanges. The non-equivalent-barotropic SSH anomaly is associated with the vertical phase lag of the most unstable eigenmode (m = 2), which develops when this mode gains energy by baroclinic energy conversion. The previous conclusion that anticyclones cannot split on their own should be revised to the following: anticyclones cannot split by barotropic processes alone?baroclinic instability is a necessary ingredient for splitting to occur.
    publisherAmerican Meteorological Society
    titleWhy Anticyclones Can Split
    typeJournal Paper
    journal volume33
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2003)033<1579:WACS>2.0.CO;2
    journal fristpage1579
    journal lastpage1591
    treeJournal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian