YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Nonlinear Midlatitude Ocean Adjustment

    Source: Journal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 005::page 1057
    Author:
    Dewar, William K.
    DOI: 10.1175/1520-0485(2003)033<1057:NMOA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Ocean adjustment on annual to interdecadal scales to variable forcing is considered for a more nonlinear general circulation than has previously been studied. The nature of the response is a strong function of forcing frequency and importantly involves the inertial recirculations rather than linear baroclinic waves. The spatial expression of this variability is concentrated near the separation latitudes of the Gulf Stream extension, a model region corresponding to an area in the real ocean of well-known strong ocean?atmosphere buoyancy exchange. ?Turn-on? cases, periodically forced cases, and stochastically forced cases are considered. The first set of experiments clarifies the adjustment timescales and dynamics of a nonlinear circulation. The second set examines modifications to that adjustment rendered by time-dependent forcing. The last set is perhaps the most realistic in terms of the atmospheric forcing of the ocean, because wind spectra are not strongly peaked beyond a few weeks. Multidecadal forcing is argued both to excite a novel, rapid mode of adjustment and to resonate with a considerably slower, nonlinear mode. Stochastic forcing seems clearly to excite the fast mode and to contribute to the slower mode, although the latter also derives considerable variance from intrinsic sources. These conclusions are based on a suite of distinct spatial and temporal characteristics of the dominant ocean variability patterns under various forcing scenarios and comment on the ocean dynamics likely to be important to decadal timescale midlatitude climate variability.
    • Download: (2.734Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Nonlinear Midlatitude Ocean Adjustment

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167136
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorDewar, William K.
    date accessioned2017-06-09T14:55:43Z
    date available2017-06-09T14:55:43Z
    date copyright2003/05/01
    date issued2003
    identifier issn0022-3670
    identifier otherams-29862.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167136
    description abstractOcean adjustment on annual to interdecadal scales to variable forcing is considered for a more nonlinear general circulation than has previously been studied. The nature of the response is a strong function of forcing frequency and importantly involves the inertial recirculations rather than linear baroclinic waves. The spatial expression of this variability is concentrated near the separation latitudes of the Gulf Stream extension, a model region corresponding to an area in the real ocean of well-known strong ocean?atmosphere buoyancy exchange. ?Turn-on? cases, periodically forced cases, and stochastically forced cases are considered. The first set of experiments clarifies the adjustment timescales and dynamics of a nonlinear circulation. The second set examines modifications to that adjustment rendered by time-dependent forcing. The last set is perhaps the most realistic in terms of the atmospheric forcing of the ocean, because wind spectra are not strongly peaked beyond a few weeks. Multidecadal forcing is argued both to excite a novel, rapid mode of adjustment and to resonate with a considerably slower, nonlinear mode. Stochastic forcing seems clearly to excite the fast mode and to contribute to the slower mode, although the latter also derives considerable variance from intrinsic sources. These conclusions are based on a suite of distinct spatial and temporal characteristics of the dominant ocean variability patterns under various forcing scenarios and comment on the ocean dynamics likely to be important to decadal timescale midlatitude climate variability.
    publisherAmerican Meteorological Society
    titleNonlinear Midlatitude Ocean Adjustment
    typeJournal Paper
    journal volume33
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2003)033<1057:NMOA>2.0.CO;2
    journal fristpage1057
    journal lastpage1082
    treeJournal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian