YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Structure of the Atlantic Ocean Equatorial Deep Jets

    Source: Journal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 003::page 600
    Author:
    Johnson, Gregory C.
    ,
    Zhang, Dongxiao
    DOI: 10.1175/1520-0485(2003)033<0600:SOTAOE>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The equatorial deep jets in the Atlantic Ocean are described using vertical strain, ?z, estimated from all available deep CTD stations in the region. Wavelet analysis reveals a distinct energy peak around 661-sdbar vertical wavelength, 1232-dbar pressure, and ±1.5° latitude from the equator. This high-vertical-wavenumber and off-equatorial maximum, coupled with previously published velocity data that show nodes in zonal velocity near ±1.5°, is grossly consistent with the structure of first-meridional-mode equatorial Rossby waves. However, the meridional scale obtained from the observations exceeds, by about 1.5, the theoretical meridional scale for these waves. The jets are strong, with zonal velocities similar in magnitude to the Kelvin wave phase speed for their vertical wavelength. Harmonics of ?z at vertical wavelengths of 1/2, 1/4, and perhaps 1/8 that of the primary peak provide evidence of a large-amplitude structure. Although sparse, available phase data at the 661-sdbar vertical wavelength suggest downward and westward phase propagation. Assuming sinusoidal character in time and longitude gives estimates of a 5- (±1) yr period and a 70° (±60°) zonal wavelength. These vertical, temporal, and zonal scales are roughly consistent with first-meridional-mode equatorial Rossby wave dynamics. However, although vertical and zonal phase propagation are discernible, there is no obvious signature of upward energy propagation in the variance vertical maxima, which is problematic for a simple linear Rossby wave interpretation.
    • Download: (1.080Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Structure of the Atlantic Ocean Equatorial Deep Jets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167125
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorJohnson, Gregory C.
    contributor authorZhang, Dongxiao
    date accessioned2017-06-09T14:55:41Z
    date available2017-06-09T14:55:41Z
    date copyright2003/03/01
    date issued2003
    identifier issn0022-3670
    identifier otherams-29852.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167125
    description abstractThe equatorial deep jets in the Atlantic Ocean are described using vertical strain, ?z, estimated from all available deep CTD stations in the region. Wavelet analysis reveals a distinct energy peak around 661-sdbar vertical wavelength, 1232-dbar pressure, and ±1.5° latitude from the equator. This high-vertical-wavenumber and off-equatorial maximum, coupled with previously published velocity data that show nodes in zonal velocity near ±1.5°, is grossly consistent with the structure of first-meridional-mode equatorial Rossby waves. However, the meridional scale obtained from the observations exceeds, by about 1.5, the theoretical meridional scale for these waves. The jets are strong, with zonal velocities similar in magnitude to the Kelvin wave phase speed for their vertical wavelength. Harmonics of ?z at vertical wavelengths of 1/2, 1/4, and perhaps 1/8 that of the primary peak provide evidence of a large-amplitude structure. Although sparse, available phase data at the 661-sdbar vertical wavelength suggest downward and westward phase propagation. Assuming sinusoidal character in time and longitude gives estimates of a 5- (±1) yr period and a 70° (±60°) zonal wavelength. These vertical, temporal, and zonal scales are roughly consistent with first-meridional-mode equatorial Rossby wave dynamics. However, although vertical and zonal phase propagation are discernible, there is no obvious signature of upward energy propagation in the variance vertical maxima, which is problematic for a simple linear Rossby wave interpretation.
    publisherAmerican Meteorological Society
    titleStructure of the Atlantic Ocean Equatorial Deep Jets
    typeJournal Paper
    journal volume33
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2003)033<0600:SOTAOE>2.0.CO;2
    journal fristpage600
    journal lastpage609
    treeJournal of Physical Oceanography:;2003:;Volume( 033 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian