YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Effect of Penetrating Momentum Flux over the Surface Boundary/Mixed Layer in a z-Coordinate OGCM of the Tropical Pacific

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 012::page 3616
    Author:
    Zhang, Rong-Hua
    ,
    Zebiak, Stephen E.
    DOI: 10.1175/1520-0485(2002)032<3616:EOPMFO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A simple scheme is proposed for penetrating atmospheric momentum flux over the ocean surface boundary layer or mixed layer (BL/ML) and is tested in the z-coordinate NOAA/Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM 3) for improving its performance. Analogous to the treatment in layered ocean models, wind stress is applied, as a body force, to the entire BL/ML whose depth is calculated from a nonlocal K-profile parameterization scheme. The penetrating scheme presents an explicit and effective way to distribute a priori momentum flux throughout the BL/ML that has varying depth in space and time, instead of just over the uppermost model level with fixed thickness. This additional procedure introduces an explicit mechanism that directly relates wind stress to the BL/ML formulation, which in turn controls current and thermal structure in the upper ocean and the interaction with the underlying thermocline. Two penetrating runs, one over the BL and the other over the ML, have similar results that differ systematically from those with the penetration over fixed depths (control run). It is demonstrated that, with coherent and systematic improvements, this penetrating scheme can have significant effects on simulated equatorial ocean currents and thermal structure not only in the surface layer, but also in the thermocline. Besides more reasonable ML depth simulation in the equatorial central basin, there is substantial reduction in the mean offset of simulated isotherm depths and warm bias in the thermocline, due to downward shift of the maximum upwelling zone in the equatorial central Pacific. Consistent with observations, the penetrating scheme realistically reproduces the springtime reversal of the South Equatorial Current and the corresponding surface warming in the central equatorial Pacific, with accompanying surfacing of the Equatorial Undercurrent Current in March?May.
    • Download: (3.453Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Effect of Penetrating Momentum Flux over the Surface Boundary/Mixed Layer in a z-Coordinate OGCM of the Tropical Pacific

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167079
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZhang, Rong-Hua
    contributor authorZebiak, Stephen E.
    date accessioned2017-06-09T14:55:35Z
    date available2017-06-09T14:55:35Z
    date copyright2002/12/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29810.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167079
    description abstractA simple scheme is proposed for penetrating atmospheric momentum flux over the ocean surface boundary layer or mixed layer (BL/ML) and is tested in the z-coordinate NOAA/Geophysical Fluid Dynamics Laboratory Modular Ocean Model (MOM 3) for improving its performance. Analogous to the treatment in layered ocean models, wind stress is applied, as a body force, to the entire BL/ML whose depth is calculated from a nonlocal K-profile parameterization scheme. The penetrating scheme presents an explicit and effective way to distribute a priori momentum flux throughout the BL/ML that has varying depth in space and time, instead of just over the uppermost model level with fixed thickness. This additional procedure introduces an explicit mechanism that directly relates wind stress to the BL/ML formulation, which in turn controls current and thermal structure in the upper ocean and the interaction with the underlying thermocline. Two penetrating runs, one over the BL and the other over the ML, have similar results that differ systematically from those with the penetration over fixed depths (control run). It is demonstrated that, with coherent and systematic improvements, this penetrating scheme can have significant effects on simulated equatorial ocean currents and thermal structure not only in the surface layer, but also in the thermocline. Besides more reasonable ML depth simulation in the equatorial central basin, there is substantial reduction in the mean offset of simulated isotherm depths and warm bias in the thermocline, due to downward shift of the maximum upwelling zone in the equatorial central Pacific. Consistent with observations, the penetrating scheme realistically reproduces the springtime reversal of the South Equatorial Current and the corresponding surface warming in the central equatorial Pacific, with accompanying surfacing of the Equatorial Undercurrent Current in March?May.
    publisherAmerican Meteorological Society
    titleEffect of Penetrating Momentum Flux over the Surface Boundary/Mixed Layer in a z-Coordinate OGCM of the Tropical Pacific
    typeJournal Paper
    journal volume32
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<3616:EOPMFO>2.0.CO;2
    journal fristpage3616
    journal lastpage3637
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian