YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Seasonal Heat Budgets of the North Pacific and North Atlantic Oceans

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 012::page 3474
    Author:
    Wang, Jiande
    ,
    Carton, James A.
    DOI: 10.1175/1520-0485(2002)032<3474:SHBOTN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Here, seasonal heat transport in the North Pacific and North Atlantic Oceans is compared using a 49-year-long analysis based on data assimilation. In midlatitudes surface heat flux is largely balanced by seasonal storage, while equatorward of 15°N, divergence of heat transport balances seasonal storage. The seasonal cycle of heat transport in the Pacific is in phase with the annual migration of solar radiation, transporting heat from the warm hemisphere to the cool hemisphere. Analysis shows that the cycle is large with peak-to-peak shifts of 5 PW. To examine the cause of these large shifts, a vertical and zonal decomposition of the heat budget is carried out. Important contributions are found from the annual cycle of wind drift in the mixed layer and adiabatically compensating return flow, part of the vigorous shallow tropical overturning cell. The annual cycle of heat transport in the North Atlantic is also large. Here too, wind-driven transports play a role, although not as strongly as in the Pacific, and this is an important reason for the differences in heat transport between the basins. Analysis shows the extent to which seasonally varying geostrophic currents and seasonal diabatic effects are relatively more important in the Atlantic. Thus, although the annual cycle of zonally integrated mass transport in the mixed layer is only 1/5 as large, the time-averaged heat transport is nearly as large as in the Pacific. This difference in transport mechanics gives rise to changes in the phase of seasonal heat transport with latitude in the Atlantic.
    • Download: (2.479Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Seasonal Heat Budgets of the North Pacific and North Atlantic Oceans

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167070
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWang, Jiande
    contributor authorCarton, James A.
    date accessioned2017-06-09T14:55:34Z
    date available2017-06-09T14:55:34Z
    date copyright2002/12/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29802.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167070
    description abstractHere, seasonal heat transport in the North Pacific and North Atlantic Oceans is compared using a 49-year-long analysis based on data assimilation. In midlatitudes surface heat flux is largely balanced by seasonal storage, while equatorward of 15°N, divergence of heat transport balances seasonal storage. The seasonal cycle of heat transport in the Pacific is in phase with the annual migration of solar radiation, transporting heat from the warm hemisphere to the cool hemisphere. Analysis shows that the cycle is large with peak-to-peak shifts of 5 PW. To examine the cause of these large shifts, a vertical and zonal decomposition of the heat budget is carried out. Important contributions are found from the annual cycle of wind drift in the mixed layer and adiabatically compensating return flow, part of the vigorous shallow tropical overturning cell. The annual cycle of heat transport in the North Atlantic is also large. Here too, wind-driven transports play a role, although not as strongly as in the Pacific, and this is an important reason for the differences in heat transport between the basins. Analysis shows the extent to which seasonally varying geostrophic currents and seasonal diabatic effects are relatively more important in the Atlantic. Thus, although the annual cycle of zonally integrated mass transport in the mixed layer is only 1/5 as large, the time-averaged heat transport is nearly as large as in the Pacific. This difference in transport mechanics gives rise to changes in the phase of seasonal heat transport with latitude in the Atlantic.
    publisherAmerican Meteorological Society
    titleSeasonal Heat Budgets of the North Pacific and North Atlantic Oceans
    typeJournal Paper
    journal volume32
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<3474:SHBOTN>2.0.CO;2
    journal fristpage3474
    journal lastpage3489
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian