YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    North Atlantic Modeling of Low-Frequency Variability in Mode Water Formation

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 009::page 2666
    Author:
    Paiva, Afonso M.
    ,
    Chassignet, Eric P.
    DOI: 10.1175/1520-0485(2002)032<2666:NAMOLF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The generation of interannual and near-decadal variability in the formation of mode waters in the western North Atlantic is investigated in the realistic framework of an isopycnic coordinate ocean model forced with atmospheric data from 1946 to 1988. At Bermuda, the model reproduces quite well the observed potential vorticity and isopycnal depth anomalies associated with the subtropical mode water (STMW). Heat storage and preconditioning of the convective activity are found to be the important factors for the generation of STMW variability, with persistence of cold (warm) conditions, associated with anomalous heat loss (gain) over the western subtropics, being more significant for the generation of the simulated variability than are strong anomalous events in isolated years. In the Labrador Sea, the model captures the phase and order of magnitude of the observed near-decadal variability in the convective activity, if not its maximum amplitude. The simulated potential vorticity anomalies are, as observed, out-of-phase with those in the western subtropics and correlate well with the North Atlantic Oscillation (NAO) at near-decadal timescales, with the oceanic response lagging the NAO by ?2?3 years. These results support the idea that the variability in water mass formation in the western North Atlantic can be attributed, to a large extent, to changes in the pattern of the large-scale atmospheric circulation, which generate sensible and latent heat flux variability by modifying the strength and position of the westerly winds and the advection of heat and moisture over the ocean. To the authors' knowledge, this is the first time that the interannual and near-decadal subsurface variability associated with STMW and Labrador Sea Water, and its relationship to the NAO, has been simulated in an ocean general circulation model.
    • Download: (1.096Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      North Atlantic Modeling of Low-Frequency Variability in Mode Water Formation

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4167009
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPaiva, Afonso M.
    contributor authorChassignet, Eric P.
    date accessioned2017-06-09T14:55:26Z
    date available2017-06-09T14:55:26Z
    date copyright2002/09/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29748.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4167009
    description abstractThe generation of interannual and near-decadal variability in the formation of mode waters in the western North Atlantic is investigated in the realistic framework of an isopycnic coordinate ocean model forced with atmospheric data from 1946 to 1988. At Bermuda, the model reproduces quite well the observed potential vorticity and isopycnal depth anomalies associated with the subtropical mode water (STMW). Heat storage and preconditioning of the convective activity are found to be the important factors for the generation of STMW variability, with persistence of cold (warm) conditions, associated with anomalous heat loss (gain) over the western subtropics, being more significant for the generation of the simulated variability than are strong anomalous events in isolated years. In the Labrador Sea, the model captures the phase and order of magnitude of the observed near-decadal variability in the convective activity, if not its maximum amplitude. The simulated potential vorticity anomalies are, as observed, out-of-phase with those in the western subtropics and correlate well with the North Atlantic Oscillation (NAO) at near-decadal timescales, with the oceanic response lagging the NAO by ?2?3 years. These results support the idea that the variability in water mass formation in the western North Atlantic can be attributed, to a large extent, to changes in the pattern of the large-scale atmospheric circulation, which generate sensible and latent heat flux variability by modifying the strength and position of the westerly winds and the advection of heat and moisture over the ocean. To the authors' knowledge, this is the first time that the interannual and near-decadal subsurface variability associated with STMW and Labrador Sea Water, and its relationship to the NAO, has been simulated in an ocean general circulation model.
    publisherAmerican Meteorological Society
    titleNorth Atlantic Modeling of Low-Frequency Variability in Mode Water Formation
    typeJournal Paper
    journal volume32
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<2666:NAMOLF>2.0.CO;2
    journal fristpage2666
    journal lastpage2680
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian