YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dynamics of Two-Dimensional Turbulent Bottom Gravity Currents

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 005::page 1460
    Author:
    Özgökmen, Tamay M.
    ,
    Chassignet, Eric P.
    DOI: 10.1175/1520-0485(2002)032<1460:DOTDTB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In light of previous numerical studies demonstrating a strong sensitivity of the strength of thermohaline circulation to the representation of overflows in ocean general circulation models, the dynamics of bottom gravity currents are investigated using a two-dimensional, nonhydrostatic numerical model. The model explicitly resolves the Kelvin?Helmholtz instability, the main mechanism of mixing in nonrotating bottom gravity currents. A series of experiments were conducted to explore the impact of density difference and slope angle on the dynamics of bottom gravity currents in a nonrotating and homogeneous environment. The features of the simulated currents; that is, a characteristic head at the leading edge and lumped vortices in the trailing fluid, agree qualitatively well with those observed in laboratory experiments. Quantitative comparisons of speed of descent indicate that laboratory results remain valid at geophysical scales. Two distinct regimes of entrainment of ambient fluid into bottom gravity currents are identified: (i) the laminar entrainment regime is associated with the initial growth of the characteristic head due to the drag exerted by the fresh fluid in front and (ii) the turbulent entrainment is associated with the Kelvin?Helmholtz instabilities. The turbulent entrainment is found to be much stronger than the laminar entrainment, and entrainment in the turbulent regime is less sensitive to the slope angle than that in the laminar regime. The entrainment is quantified as a function of basic parameters of the system, the buoyancy flux and the slope angle, for the purpose of parameterizing the mixing induced by bottom gravity currents.
    • Download: (954.9Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dynamics of Two-Dimensional Turbulent Bottom Gravity Currents

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166936
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorÖzgökmen, Tamay M.
    contributor authorChassignet, Eric P.
    date accessioned2017-06-09T14:55:16Z
    date available2017-06-09T14:55:16Z
    date copyright2002/05/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29682.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166936
    description abstractIn light of previous numerical studies demonstrating a strong sensitivity of the strength of thermohaline circulation to the representation of overflows in ocean general circulation models, the dynamics of bottom gravity currents are investigated using a two-dimensional, nonhydrostatic numerical model. The model explicitly resolves the Kelvin?Helmholtz instability, the main mechanism of mixing in nonrotating bottom gravity currents. A series of experiments were conducted to explore the impact of density difference and slope angle on the dynamics of bottom gravity currents in a nonrotating and homogeneous environment. The features of the simulated currents; that is, a characteristic head at the leading edge and lumped vortices in the trailing fluid, agree qualitatively well with those observed in laboratory experiments. Quantitative comparisons of speed of descent indicate that laboratory results remain valid at geophysical scales. Two distinct regimes of entrainment of ambient fluid into bottom gravity currents are identified: (i) the laminar entrainment regime is associated with the initial growth of the characteristic head due to the drag exerted by the fresh fluid in front and (ii) the turbulent entrainment is associated with the Kelvin?Helmholtz instabilities. The turbulent entrainment is found to be much stronger than the laminar entrainment, and entrainment in the turbulent regime is less sensitive to the slope angle than that in the laminar regime. The entrainment is quantified as a function of basic parameters of the system, the buoyancy flux and the slope angle, for the purpose of parameterizing the mixing induced by bottom gravity currents.
    publisherAmerican Meteorological Society
    titleDynamics of Two-Dimensional Turbulent Bottom Gravity Currents
    typeJournal Paper
    journal volume32
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<1460:DOTDTB>2.0.CO;2
    journal fristpage1460
    journal lastpage1478
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian