YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Alongshore Transport of Freshwater in a Surface-Trapped River Plume

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 003::page 957
    Author:
    Fong, Derek A.
    ,
    Geyer, W. Rockwell
    DOI: 10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The alongshore transport of a surface-trapped river plume is studied using a three-dimensional model. Model simulations exhibit the previously observed rightward veering (in the Northern Hemisphere) of the freshwater and establishment of a downstream geostrophically balanced coastal current. In the absence of any ambient current, the plume does not reach a steady state. The downstream coastal current only carries a fraction of the discharged freshwater; the remaining fraction recirculates in a continually growing ?bulge? of freshwater in the vicinity of the river mouth. The river mouth conditions influence the amount of freshwater transported in the coastal current relative to the growing bulge. For high Rossby number [O(1)] discharge conditions, the bulge shape is circular and the coastal current transport is smaller than for the model runs of low Rossby number discharges. For all model runs conducted without an ambient current, the freshwater transport in the coastal current is less than the freshwater discharged at the river mouth. The presence of an ambient current (in the same direction as the geostrophic coastal current) augments the transport in the plume such that its downstream freshwater transport matches the freshwater source, and the plume evolves to a steady-state width. The steady-state transport accounted for by the ambient current is independent of the strength of the ambient current. The amplitude of the ambient current only determines the time required to reach a steady-state plume width. A key result of this study is that an external forcing agent (e.g., wind or ambient current) is required in order for the entire freshwater volume discharged by a river to be transported downstream.
    • Download: (1.289Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Alongshore Transport of Freshwater in a Surface-Trapped River Plume

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166899
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFong, Derek A.
    contributor authorGeyer, W. Rockwell
    date accessioned2017-06-09T14:55:08Z
    date available2017-06-09T14:55:08Z
    date copyright2002/03/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29649.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166899
    description abstractThe alongshore transport of a surface-trapped river plume is studied using a three-dimensional model. Model simulations exhibit the previously observed rightward veering (in the Northern Hemisphere) of the freshwater and establishment of a downstream geostrophically balanced coastal current. In the absence of any ambient current, the plume does not reach a steady state. The downstream coastal current only carries a fraction of the discharged freshwater; the remaining fraction recirculates in a continually growing ?bulge? of freshwater in the vicinity of the river mouth. The river mouth conditions influence the amount of freshwater transported in the coastal current relative to the growing bulge. For high Rossby number [O(1)] discharge conditions, the bulge shape is circular and the coastal current transport is smaller than for the model runs of low Rossby number discharges. For all model runs conducted without an ambient current, the freshwater transport in the coastal current is less than the freshwater discharged at the river mouth. The presence of an ambient current (in the same direction as the geostrophic coastal current) augments the transport in the plume such that its downstream freshwater transport matches the freshwater source, and the plume evolves to a steady-state width. The steady-state transport accounted for by the ambient current is independent of the strength of the ambient current. The amplitude of the ambient current only determines the time required to reach a steady-state plume width. A key result of this study is that an external forcing agent (e.g., wind or ambient current) is required in order for the entire freshwater volume discharged by a river to be transported downstream.
    publisherAmerican Meteorological Society
    titleThe Alongshore Transport of Freshwater in a Surface-Trapped River Plume
    typeJournal Paper
    journal volume32
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<0957:TATOFI>2.0.CO;2
    journal fristpage957
    journal lastpage972
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian