YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Statistical Theory for the “Patchiness” of Open-Ocean Deep Convection: The Effect of Preconditioning

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 002::page 599
    Author:
    DiBattista, Mark T.
    ,
    Majda, Andrew J.
    ,
    Marshall, John
    DOI: 10.1175/1520-0485(2002)032<0599:ASTFTP>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Within basins that exhibit open-ocean convection, convectively mixed fluid is often observed in regions of upward-doming isopycnal surfaces, preconditioned by either cyclonic circulation and/or bottom topography. Here, an equilibrium statistical theory for open-ocean convection, developed in the context of two-layer heton models, is adapted to study the outcome of basinwide cooling events over preexisting large-scale ambient flow. A range of prototype ambient flows is studied?including cyclonic and anticyclonic gyres, purely barotropic circulations, and topographically induced flow about a localized seamount and within a broad bowl-like depression. The critical element of these elementary ambient flows is the position of the fluid interface separating the upper and lower layers; it is displaced upward within the cyclonic gyre and the upwelling seamount, downward within the anticyclonic gyre and the bowl-like depression, and is flat for purely barotropic flow. The authors then consider the effect of applying cooling by introducing cold hetons over the preconditioned flow. The most probable postconvection state is found by maximizing the entropy contained in the coarse-grained vorticity field subject to key large-scale constraints. Consistent with observations, the most probable distribution of the cold-temperature anomalies, introduced by the convective overturning that follows a basin-scale surface cold-air outbreak, is indeed concentrated about the peaks of upwelling isopycnals. In contrast, ambient flows with isopycnal surfaces that slope downward fail to confine the cold-temperature anomalies as hetons tend to cluster along the edges and corners of the basin with much weaker displacements.
    • Download: (1.368Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Statistical Theory for the “Patchiness” of Open-Ocean Deep Convection: The Effect of Preconditioning

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166881
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorDiBattista, Mark T.
    contributor authorMajda, Andrew J.
    contributor authorMarshall, John
    date accessioned2017-06-09T14:55:06Z
    date available2017-06-09T14:55:06Z
    date copyright2002/02/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29632.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166881
    description abstractWithin basins that exhibit open-ocean convection, convectively mixed fluid is often observed in regions of upward-doming isopycnal surfaces, preconditioned by either cyclonic circulation and/or bottom topography. Here, an equilibrium statistical theory for open-ocean convection, developed in the context of two-layer heton models, is adapted to study the outcome of basinwide cooling events over preexisting large-scale ambient flow. A range of prototype ambient flows is studied?including cyclonic and anticyclonic gyres, purely barotropic circulations, and topographically induced flow about a localized seamount and within a broad bowl-like depression. The critical element of these elementary ambient flows is the position of the fluid interface separating the upper and lower layers; it is displaced upward within the cyclonic gyre and the upwelling seamount, downward within the anticyclonic gyre and the bowl-like depression, and is flat for purely barotropic flow. The authors then consider the effect of applying cooling by introducing cold hetons over the preconditioned flow. The most probable postconvection state is found by maximizing the entropy contained in the coarse-grained vorticity field subject to key large-scale constraints. Consistent with observations, the most probable distribution of the cold-temperature anomalies, introduced by the convective overturning that follows a basin-scale surface cold-air outbreak, is indeed concentrated about the peaks of upwelling isopycnals. In contrast, ambient flows with isopycnal surfaces that slope downward fail to confine the cold-temperature anomalies as hetons tend to cluster along the edges and corners of the basin with much weaker displacements.
    publisherAmerican Meteorological Society
    titleA Statistical Theory for the “Patchiness” of Open-Ocean Deep Convection: The Effect of Preconditioning
    typeJournal Paper
    journal volume32
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<0599:ASTFTP>2.0.CO;2
    journal fristpage599
    journal lastpage626
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian