YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Fully Lagrangian Floats in Labrador Sea Deep Convection: Comparison of Numerical and Experimental Results

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 002::page 493
    Author:
    Harcourt, Ramsey R.
    ,
    Steffen, Elizabeth L.
    ,
    Garwood, Roland W.
    ,
    D'Asaro, Eric A.
    DOI: 10.1175/1520-0485(2002)032<0493:FLFILS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Measurements of deep convection from fully Lagrangian floats deployed in the Labrador Sea during February and March 1997 are compared with results from model drifters embedded in a large eddy simulation (LES) of the rapidly deepening mixed layer. The deep Lagrangian floats (DLFs) have a large vertical drag, and are designed to nearly match the density and compressibility of seawater. The high-resolution numerical simulation of deep convective turbulence uses initial conditions and surface forcing obtained from in situ oceanic and atmospheric observations made by the R/V Knorr. The response of model floats to the resolved large eddy fields of buoyancy and velocity is simulated for floats that are 5 g too buoyant, as well as for floats that are correctly ballasted. Mean profiles of potential temperature, Lagrangian rates of heating and acceleration, vertical turbulent kinetic energy (TKE), vertical heat flux, potential temperature variance, and float probability distribution functions (PDFs) are compared for actual and model floats. Horizontally homogeneous convection, as represented by the LES model, accounts for most of the first and second order statistics from float observations, except that observed temperature variance is several times larger than model variance. There are no correspondingly large differences in vertical TKE, heat flux, or mixed layer depth. The augmented temperature variance may be due to mixing across large-scale temperature and salinity gradients that are largely compensated in buoyancy. The rest of the DLF statistics agree well with the response of correctly ballasted model floats in the lowest 75% of the mixed layer, and are less consistent with results from buoyantly ballasted model floats. Other differences between observation and simulation in the mean profiles of heat flux, vertical TKE, and Lagrangian heating and vertical acceleration rates are confined to the upper quarter of the mixed layer. These differences are small contributions to layer-averaged quantities, but represent statistically significant profile features. Larger observed values of heat flux and vertical TKE in the upper quarter of the mixed layer are more consistent with model floats ballasted light. Float buoyancy, however, cannot fully account for the observed PDFs, temperature profiles, and Lagrangian rates of heating and acceleration. A test of Lagrangian self-consistency comparing vertical TKE and Lagrangian acceleration also shows that DLF measurements are not significantly affected by excess float buoyancy. These upper mixed layer features may instead be due to the interaction of wind-driven currents and baroclinicity.
    • Download: (1.069Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Fully Lagrangian Floats in Labrador Sea Deep Convection: Comparison of Numerical and Experimental Results

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166873
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHarcourt, Ramsey R.
    contributor authorSteffen, Elizabeth L.
    contributor authorGarwood, Roland W.
    contributor authorD'Asaro, Eric A.
    date accessioned2017-06-09T14:55:04Z
    date available2017-06-09T14:55:04Z
    date copyright2002/02/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29625.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166873
    description abstractMeasurements of deep convection from fully Lagrangian floats deployed in the Labrador Sea during February and March 1997 are compared with results from model drifters embedded in a large eddy simulation (LES) of the rapidly deepening mixed layer. The deep Lagrangian floats (DLFs) have a large vertical drag, and are designed to nearly match the density and compressibility of seawater. The high-resolution numerical simulation of deep convective turbulence uses initial conditions and surface forcing obtained from in situ oceanic and atmospheric observations made by the R/V Knorr. The response of model floats to the resolved large eddy fields of buoyancy and velocity is simulated for floats that are 5 g too buoyant, as well as for floats that are correctly ballasted. Mean profiles of potential temperature, Lagrangian rates of heating and acceleration, vertical turbulent kinetic energy (TKE), vertical heat flux, potential temperature variance, and float probability distribution functions (PDFs) are compared for actual and model floats. Horizontally homogeneous convection, as represented by the LES model, accounts for most of the first and second order statistics from float observations, except that observed temperature variance is several times larger than model variance. There are no correspondingly large differences in vertical TKE, heat flux, or mixed layer depth. The augmented temperature variance may be due to mixing across large-scale temperature and salinity gradients that are largely compensated in buoyancy. The rest of the DLF statistics agree well with the response of correctly ballasted model floats in the lowest 75% of the mixed layer, and are less consistent with results from buoyantly ballasted model floats. Other differences between observation and simulation in the mean profiles of heat flux, vertical TKE, and Lagrangian heating and vertical acceleration rates are confined to the upper quarter of the mixed layer. These differences are small contributions to layer-averaged quantities, but represent statistically significant profile features. Larger observed values of heat flux and vertical TKE in the upper quarter of the mixed layer are more consistent with model floats ballasted light. Float buoyancy, however, cannot fully account for the observed PDFs, temperature profiles, and Lagrangian rates of heating and acceleration. A test of Lagrangian self-consistency comparing vertical TKE and Lagrangian acceleration also shows that DLF measurements are not significantly affected by excess float buoyancy. These upper mixed layer features may instead be due to the interaction of wind-driven currents and baroclinicity.
    publisherAmerican Meteorological Society
    titleFully Lagrangian Floats in Labrador Sea Deep Convection: Comparison of Numerical and Experimental Results
    typeJournal Paper
    journal volume32
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<0493:FLFILS>2.0.CO;2
    journal fristpage493
    journal lastpage510
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian