YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Series of Middepth Zonal Flows in the Pacific Driven by Winds

    Source: Journal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 001::page 161
    Author:
    Nakano, Hideyuki
    ,
    Suginohara, Nobuo
    DOI: 10.1175/1520-0485(2002)032<0161:ASOMZF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A series of middepth zonal flows observed in the Pacific is produced in a World Ocean model with the horizontal resolution of 1° ? 1° and 40 vertical levels. It is demonstrated that the middepth zonal flows are driven by the wind and reach down to several thousand meters. The surface wind gyres appear to shift poleward with depth, leaving behind the gyres that originate from the equatorial response. In meridional sections, the pattern of the zonal flows slants poleward with increasing depth. The formation mechanism for the middepth zonal flows is clarified using an idealized basin model and a semianalytical model of vertical normal mode decomposition. In the models, the inclusion of vertical diffusion is essential. The zonal flows at low latitudes are formed as the equatorial response to uniform zonal winds. The response at middle and high latitudes is accounted for as follows. Quasigeostrophic (QG) dynamics with vertical diffusion reproduces the reversal of the zonal flows with depth. The slanting pattern of the zonal flows is due to the non-QG effect for the response of the vertical higher modes. Then the inclusion of horizontal diffusion reduces the response of the gravest modes. The third to fifth vertical modes are very important for forming the middepth wind-driven circulation. The wind-driven circulation at middepths is very weak compared to that in the surface layer, but this is sufficient to overcome the weak thermohaline circulation in the middepth Pacific.
    • Download: (1.380Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Series of Middepth Zonal Flows in the Pacific Driven by Winds

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166852
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorNakano, Hideyuki
    contributor authorSuginohara, Nobuo
    date accessioned2017-06-09T14:55:00Z
    date available2017-06-09T14:55:00Z
    date copyright2002/01/01
    date issued2002
    identifier issn0022-3670
    identifier otherams-29606.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166852
    description abstractA series of middepth zonal flows observed in the Pacific is produced in a World Ocean model with the horizontal resolution of 1° ? 1° and 40 vertical levels. It is demonstrated that the middepth zonal flows are driven by the wind and reach down to several thousand meters. The surface wind gyres appear to shift poleward with depth, leaving behind the gyres that originate from the equatorial response. In meridional sections, the pattern of the zonal flows slants poleward with increasing depth. The formation mechanism for the middepth zonal flows is clarified using an idealized basin model and a semianalytical model of vertical normal mode decomposition. In the models, the inclusion of vertical diffusion is essential. The zonal flows at low latitudes are formed as the equatorial response to uniform zonal winds. The response at middle and high latitudes is accounted for as follows. Quasigeostrophic (QG) dynamics with vertical diffusion reproduces the reversal of the zonal flows with depth. The slanting pattern of the zonal flows is due to the non-QG effect for the response of the vertical higher modes. Then the inclusion of horizontal diffusion reduces the response of the gravest modes. The third to fifth vertical modes are very important for forming the middepth wind-driven circulation. The wind-driven circulation at middepths is very weak compared to that in the surface layer, but this is sufficient to overcome the weak thermohaline circulation in the middepth Pacific.
    publisherAmerican Meteorological Society
    titleA Series of Middepth Zonal Flows in the Pacific Driven by Winds
    typeJournal Paper
    journal volume32
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2002)032<0161:ASOMZF>2.0.CO;2
    journal fristpage161
    journal lastpage176
    treeJournal of Physical Oceanography:;2002:;Volume( 032 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian