YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Buoyancy Forcing by Turbulence above Rough Topography in the Abyssal Brazil Basin

    Source: Journal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 012::page 3476
    Author:
    St. Laurent, Louis C.
    ,
    Toole, John M.
    ,
    Schmitt, Raymond W.
    DOI: 10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Observations of turbulent dissipation above rough bathymetry in the abyssal Brazil Basin are presented. Relative to regions with smooth bathymetry, dissipation is markedly enhanced above rough topography of the Mid-Atlantic Ridge with levels above bathymetric slopes exceeding levels observed over crests and canyon floors. Furthermore, mixing levels in rough areas are modulated by the spring?neap tidal cycle. Internal waves generated by barotropic tidal flow over topography are the likely mechanism for supplying the energy needed to support the observed turbulent dissipation. A model of the spatial and temporal patterns in the turbulent dissipation rate is used to constrain the diapycnal advection in an inverse calculation for the circulation in an area of rough bathymetry. This inverse model uses both beta-spiral and integrated forms of the advective budgets for heat, mass, and vorticity, and contains sufficient information to resolve the full three-dimensional flow. The inverse model solution reveals the presence of a bouyancy forced circulation driven by mixing in abyssal canyons. On isopycnals above the level of fracture-zone crests near the Mid-Atlantic Ridge, the flow is westward and fluid is downwelled toward greater density. Along deeper isopycnals, fluid is carried eastward and upwelled in canyons. The divergence of diapycnal mass flux is a significant forcing mechanism for this circulation. These results suggest that mixing in abyssal canyons plays an important role in the circulation of abyssal waters.
    • Download: (2.461Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Buoyancy Forcing by Turbulence above Rough Topography in the Abyssal Brazil Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166834
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSt. Laurent, Louis C.
    contributor authorToole, John M.
    contributor authorSchmitt, Raymond W.
    date accessioned2017-06-09T14:54:58Z
    date available2017-06-09T14:54:58Z
    date copyright2001/12/01
    date issued2001
    identifier issn0022-3670
    identifier otherams-29590.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166834
    description abstractObservations of turbulent dissipation above rough bathymetry in the abyssal Brazil Basin are presented. Relative to regions with smooth bathymetry, dissipation is markedly enhanced above rough topography of the Mid-Atlantic Ridge with levels above bathymetric slopes exceeding levels observed over crests and canyon floors. Furthermore, mixing levels in rough areas are modulated by the spring?neap tidal cycle. Internal waves generated by barotropic tidal flow over topography are the likely mechanism for supplying the energy needed to support the observed turbulent dissipation. A model of the spatial and temporal patterns in the turbulent dissipation rate is used to constrain the diapycnal advection in an inverse calculation for the circulation in an area of rough bathymetry. This inverse model uses both beta-spiral and integrated forms of the advective budgets for heat, mass, and vorticity, and contains sufficient information to resolve the full three-dimensional flow. The inverse model solution reveals the presence of a bouyancy forced circulation driven by mixing in abyssal canyons. On isopycnals above the level of fracture-zone crests near the Mid-Atlantic Ridge, the flow is westward and fluid is downwelled toward greater density. Along deeper isopycnals, fluid is carried eastward and upwelled in canyons. The divergence of diapycnal mass flux is a significant forcing mechanism for this circulation. These results suggest that mixing in abyssal canyons plays an important role in the circulation of abyssal waters.
    publisherAmerican Meteorological Society
    titleBuoyancy Forcing by Turbulence above Rough Topography in the Abyssal Brazil Basin
    typeJournal Paper
    journal volume31
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2001)031<3476:BFBTAR>2.0.CO;2
    journal fristpage3476
    journal lastpage3495
    treeJournal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian