YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Thickness and Enthalpy Distribution Sea-Ice Model

    Source: Journal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 010::page 2986
    Author:
    Zhang, Jinlun
    ,
    Rothrock, Drew
    DOI: 10.1175/1520-0485(2001)031<2986:ATAEDS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The theory of sea ice thickness distribution developed by Thorndike et al. has been extended to include sea ice enthalpy distribution. The extended theory conserves both ice mass and thermal energy, in the form of the heat stored in the ice, by jointly solving a thickness-distribution equation and an enthalpy-distribution equation. Both equations have been implemented in a one-dimensional dynamic thermodynamic sea-ice model with 12 ice thickness categories following the numerical procedure of Hibler. The implementation of the enthalpy-distribution equation allows the sea-ice model to account for any changes in the ice thermal energy induced by sea ice processes. As a result, the model is able to conserve not only the ice mass but also its thermal energy in the presence of ice advection, growth, melting, and ridging. Conserving ice thermal energy in a thickness-distribution sea ice model improves the prediction of ice growth, summer ice melt in particular, and therefore ice thickness. Inability to conserve the thermal energy by not implementing the enthalpy-distribution equation, compounded with an effect of the surface albedo feedback, causes the model to underestimate ice thickness by up to 11% under various conditions of thermal and mechanical forcing. This indicates the importance of conserving energy in numerical investigations of climate.
    • Download: (231.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Thickness and Enthalpy Distribution Sea-Ice Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166797
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorZhang, Jinlun
    contributor authorRothrock, Drew
    date accessioned2017-06-09T14:54:53Z
    date available2017-06-09T14:54:53Z
    date copyright2001/10/01
    date issued2001
    identifier issn0022-3670
    identifier otherams-29557.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166797
    description abstractThe theory of sea ice thickness distribution developed by Thorndike et al. has been extended to include sea ice enthalpy distribution. The extended theory conserves both ice mass and thermal energy, in the form of the heat stored in the ice, by jointly solving a thickness-distribution equation and an enthalpy-distribution equation. Both equations have been implemented in a one-dimensional dynamic thermodynamic sea-ice model with 12 ice thickness categories following the numerical procedure of Hibler. The implementation of the enthalpy-distribution equation allows the sea-ice model to account for any changes in the ice thermal energy induced by sea ice processes. As a result, the model is able to conserve not only the ice mass but also its thermal energy in the presence of ice advection, growth, melting, and ridging. Conserving ice thermal energy in a thickness-distribution sea ice model improves the prediction of ice growth, summer ice melt in particular, and therefore ice thickness. Inability to conserve the thermal energy by not implementing the enthalpy-distribution equation, compounded with an effect of the surface albedo feedback, causes the model to underestimate ice thickness by up to 11% under various conditions of thermal and mechanical forcing. This indicates the importance of conserving energy in numerical investigations of climate.
    publisherAmerican Meteorological Society
    titleA Thickness and Enthalpy Distribution Sea-Ice Model
    typeJournal Paper
    journal volume31
    journal issue10
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2001)031<2986:ATAEDS>2.0.CO;2
    journal fristpage2986
    journal lastpage3001
    treeJournal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian