YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Identifying a Damped Oscillatory Thermohaline Mode in a General Circulation Model Using an Adjoint Model

    Source: Journal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 008::page 2297
    Author:
    Sirkes, Ziv
    ,
    Tziperman, Eli
    DOI: 10.1175/1520-0485(2001)031<2297:IADOTM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A damped oscillatory mode of the thermohaline circulation (THC), which may play a role in interdecadal climate variability, is identified in a global primitive equation model. This analysis is done under mixed boundary conditions using an adjoint of the primitive equation model. The linearized versus nonlinear stability behavior of the model is studied by comparing the adjoint analysis to runs of the fully nonlinear model. It is shown that a steady-state solution obtained under larger amplitude freshwater surface forcing (and hence with a weaker North Atlantic overturning) is unstable, while a steady-state solution with stronger THC is stable. In a certain intermediate parameter regime it is found that the full nonlinear model state may be unstable, while the linearized analysis indicates that the model state is stable. It is proposed that this may be because either the instability mechanism at this intermediate regime is nonlinear or, while the model is linearly stable at this regime, it allows for temporary growth of small perturbations due to the non-normal nature of the problem. A clear signal of variations is not found in the amplitude of the horizontal gyre circulation, possibly indicating that the gyre effect that was found in THC oscillations in some previous studies may not be essential for the existence of the THC oscillation. The long timescale of the oscillation in the present model also seems to indicate that the gyre effect may not be a main active participant in the thermohaline oscillation mechanism.
    • Download: (1.104Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Identifying a Damped Oscillatory Thermohaline Mode in a General Circulation Model Using an Adjoint Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166732
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSirkes, Ziv
    contributor authorTziperman, Eli
    date accessioned2017-06-09T14:54:43Z
    date available2017-06-09T14:54:43Z
    date copyright2001/08/01
    date issued2001
    identifier issn0022-3670
    identifier otherams-29499.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166732
    description abstractA damped oscillatory mode of the thermohaline circulation (THC), which may play a role in interdecadal climate variability, is identified in a global primitive equation model. This analysis is done under mixed boundary conditions using an adjoint of the primitive equation model. The linearized versus nonlinear stability behavior of the model is studied by comparing the adjoint analysis to runs of the fully nonlinear model. It is shown that a steady-state solution obtained under larger amplitude freshwater surface forcing (and hence with a weaker North Atlantic overturning) is unstable, while a steady-state solution with stronger THC is stable. In a certain intermediate parameter regime it is found that the full nonlinear model state may be unstable, while the linearized analysis indicates that the model state is stable. It is proposed that this may be because either the instability mechanism at this intermediate regime is nonlinear or, while the model is linearly stable at this regime, it allows for temporary growth of small perturbations due to the non-normal nature of the problem. A clear signal of variations is not found in the amplitude of the horizontal gyre circulation, possibly indicating that the gyre effect that was found in THC oscillations in some previous studies may not be essential for the existence of the THC oscillation. The long timescale of the oscillation in the present model also seems to indicate that the gyre effect may not be a main active participant in the thermohaline oscillation mechanism.
    publisherAmerican Meteorological Society
    titleIdentifying a Damped Oscillatory Thermohaline Mode in a General Circulation Model Using an Adjoint Model
    typeJournal Paper
    journal volume31
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2001)031<2297:IADOTM>2.0.CO;2
    journal fristpage2297
    journal lastpage2306
    treeJournal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian