YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Can Pacific Ocean Thermocline Depth Anomalies Be Simulated by a Simple Linear Vorticity Model?

    Source: Journal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 007::page 1786
    Author:
    Perkins, Matthew L.
    ,
    Holbrook, Neil J.
    DOI: 10.1175/1520-0485(2001)031<1786:CPOTDA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This study attempts to reproduce the salient features of the variability in the depth of the thermocline in the marginally eddy-resolving Parallel Ocean Climate Model (POCM) of Semtner and Chervin, using a simple linear vorticity model that only permits local Ekman pumping and the propagation of long Rossby waves. The dynamic upper-ocean variability in the POCM is examined in response to changes in daily European Centre for Medium-Range Weather Forecasts wind stresses across the tropical and subtropical Pacific Ocean (31°S?31°N) between 1983 and 1989. The POCM provides a complete and physically consistent representation of the state of the Pacific Ocean, with the phase of the thermocline depth anomalies being consistent with the observed El Niño/La Niña variations in the near-equatorial zone and southwest Pacific during the decade. A series of vorticity model sensitivity experiments, incorporating scaled Rossby wave speeds based on recent observations from the TOPEX/Poseidon satellite altimeter, is used to examine and compare the phase and amplitude variations in the depth of the internal surface against changes in the depth of the 14°C isotherm (D14, used as a proxy for the depth of the thermocline, or pycnocline) as simulated in the POCM. This study demonstrates that the simple linear vorticity model can reproduce the Pacific Ocean thermocline depth anomalies in the interior of the subtropical gyres as simulated by the POCM. These variations are both qualitatively and quantitatively consistent with an ocean forced by only Ekman pumping and Rossby waves that traverse the basin, with isolated topographic and background influences. Further, a number of experiments demonstrate that the phase similarities, from correlation analyses, between results from the POCM and those from the simple dynamical model are statistically significant (at the 95% level) across the majority of the 11°S, 11°N, and 21°N transects in the western, central, or eastern Pacific basin. At 11° and 21° latitude, the amplitude of the variability is similarly comparable across much of the basin. The model is generally less successful at 31° latitude where higher baroclinic modes of the mean flow become important.
    • Download: (3.330Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Can Pacific Ocean Thermocline Depth Anomalies Be Simulated by a Simple Linear Vorticity Model?

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166693
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPerkins, Matthew L.
    contributor authorHolbrook, Neil J.
    date accessioned2017-06-09T14:54:38Z
    date available2017-06-09T14:54:38Z
    date copyright2001/07/01
    date issued2001
    identifier issn0022-3670
    identifier otherams-29463.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166693
    description abstractThis study attempts to reproduce the salient features of the variability in the depth of the thermocline in the marginally eddy-resolving Parallel Ocean Climate Model (POCM) of Semtner and Chervin, using a simple linear vorticity model that only permits local Ekman pumping and the propagation of long Rossby waves. The dynamic upper-ocean variability in the POCM is examined in response to changes in daily European Centre for Medium-Range Weather Forecasts wind stresses across the tropical and subtropical Pacific Ocean (31°S?31°N) between 1983 and 1989. The POCM provides a complete and physically consistent representation of the state of the Pacific Ocean, with the phase of the thermocline depth anomalies being consistent with the observed El Niño/La Niña variations in the near-equatorial zone and southwest Pacific during the decade. A series of vorticity model sensitivity experiments, incorporating scaled Rossby wave speeds based on recent observations from the TOPEX/Poseidon satellite altimeter, is used to examine and compare the phase and amplitude variations in the depth of the internal surface against changes in the depth of the 14°C isotherm (D14, used as a proxy for the depth of the thermocline, or pycnocline) as simulated in the POCM. This study demonstrates that the simple linear vorticity model can reproduce the Pacific Ocean thermocline depth anomalies in the interior of the subtropical gyres as simulated by the POCM. These variations are both qualitatively and quantitatively consistent with an ocean forced by only Ekman pumping and Rossby waves that traverse the basin, with isolated topographic and background influences. Further, a number of experiments demonstrate that the phase similarities, from correlation analyses, between results from the POCM and those from the simple dynamical model are statistically significant (at the 95% level) across the majority of the 11°S, 11°N, and 21°N transects in the western, central, or eastern Pacific basin. At 11° and 21° latitude, the amplitude of the variability is similarly comparable across much of the basin. The model is generally less successful at 31° latitude where higher baroclinic modes of the mean flow become important.
    publisherAmerican Meteorological Society
    titleCan Pacific Ocean Thermocline Depth Anomalies Be Simulated by a Simple Linear Vorticity Model?
    typeJournal Paper
    journal volume31
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2001)031<1786:CPOTDA>2.0.CO;2
    journal fristpage1786
    journal lastpage1806
    treeJournal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian