YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Reconstructing Basin-Scale Eulerian Velocity Fields from Simulated Drifter Data

    Source: Journal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 005::page 1361
    Author:
    Toner, M.
    ,
    Kirwan, A. D.
    ,
    Lipphardt, B. L.
    ,
    Poje, A. C.
    ,
    Jones, C. K. R. T.
    ,
    Grosch, C. E.
    DOI: 10.1175/1520-0485(2001)031<1361:RBSEVF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km ? 2000 km square domain is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from numerically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated by least squares minimization and the reconstructed fields are compared to the original model output. The authors find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter observations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200 drifters deployed in the 1000 km ? 1400 km energetic western region. The base reconstruction error, achieved with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using 180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions from simulated mooring data located at the initial positions of representative good and poor coverage drifter deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields.
    • Download: (1.174Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Reconstructing Basin-Scale Eulerian Velocity Fields from Simulated Drifter Data

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166663
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorToner, M.
    contributor authorKirwan, A. D.
    contributor authorLipphardt, B. L.
    contributor authorPoje, A. C.
    contributor authorJones, C. K. R. T.
    contributor authorGrosch, C. E.
    date accessioned2017-06-09T14:54:31Z
    date available2017-06-09T14:54:31Z
    date copyright2001/05/01
    date issued2001
    identifier issn0022-3670
    identifier otherams-29436.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166663
    description abstractA single-layer, reduced-gravity, double-gyre primitive equation model in a 2000 km ? 2000 km square domain is used to test the accuracy and sensitivity of time-dependent Eulerian velocity fields reconstructed from numerically generated drifter trajectories and climatology. The goal is to determine how much Lagrangian data is needed to capture the Eulerian velocity field within a specified accuracy. The Eulerian fields are found by projecting, on an analytic set of divergence-free basis functions, drifter data launched in the active western half of the basin supplemented by climatology in the eastern domain. The time-dependent coefficients are evaluated by least squares minimization and the reconstructed fields are compared to the original model output. The authors find that the accuracy of the reconstructed fields depends critically on the spatial coverage of the drifter observations. With good spatial coverage, the technique allows accurate Eulerian reconstructions with under 200 drifters deployed in the 1000 km ? 1400 km energetic western region. The base reconstruction error, achieved with full observation of the velocity field, ranges from 5% (with 191 basis functions) to 30% (with 65 basis functions). Specific analysis of the relation between spatial coverage and reconstruction error is presented using 180 drifters deployed in 100 different initial configurations that maximize coverage extremes. The simulated drifter data is projected on 107 basis functions for a 50-day period. The base reconstruction error of 15% is achieved when drifters occupy approximately 110 (out of 285) 70-km cells in the western region. Reconstructions from simulated mooring data located at the initial positions of representative good and poor coverage drifter deployments show the effect drifter dispersion has on data voids. The authors conclude that with appropriate coverage, drifter data could provide accurate basin-scale reconstruction of Eulerian velocity fields.
    publisherAmerican Meteorological Society
    titleReconstructing Basin-Scale Eulerian Velocity Fields from Simulated Drifter Data
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2001)031<1361:RBSEVF>2.0.CO;2
    journal fristpage1361
    journal lastpage1376
    treeJournal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian