YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Evolution of the Bimodal Directional Distribution of Ocean Waves

    Source: Journal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 005::page 1200
    Author:
    Wang, David W.
    ,
    Hwang, Paul A.
    DOI: 10.1175/1520-0485(2001)031<1200:EOTBDD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Recent results of numerical wave models have shown that the presence of a bimodal directional spreading is a robust feature at wavenumbers above the spectral peak. This directional bimodality is controlled mainly by directional transfer of energy through nonlinear wave?wave interactions. The bimodal feature has also been observed in the directional spectra derived from the spatial topography of ocean surface waves acquired by stereo-photography, image radars, and an airborne scanning lidar system. In this study, a comprehensive data analysis of the evolution of the wave directional distribution during two active wave growth periods in Lake Michigan is conducted. The wind and wave measurements are acquired by two heave?pitch?roll buoys moored at a nearshore and an offshore station. An empirical method averaging the results of the maximum likelihood method and maximum entropy method is used to estimate the directional distribution from buoy measurements. The study shows that the bimodal distribution is a distinctive and persistent feature over a broad frequency range throughout the wave growth process. The characteristics of directional bimodality are quantified by parameters related to the separation angles and the amplitudes of the sidelobes. In general, the values of the parameters are smallest near the peak frequency and increase toward both lower and higher frequencies. This frequency-dependent pattern appears to be invariant to the change of wave age throughout the wave growth process. The persistent nature of the directional bimodality indicates that the nonlinear wave?wave interaction mechanism not only actively moves wave energy away from the peak frequency into both higher and lower frequency components but also constantly redistributes wave energy into directions oblique to the wind direction. At the offshore buoy site when the wind and peak wave directions align closely, the bimodal distribution is symmetric about the wind direction. At the nearshore buoy site when the local wind and the peak wave are not moving in the same direction or the wind field is less homogeneous, the bimodal distribution is asymmetric.
    • Download: (606.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Evolution of the Bimodal Directional Distribution of Ocean Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166653
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWang, David W.
    contributor authorHwang, Paul A.
    date accessioned2017-06-09T14:54:30Z
    date available2017-06-09T14:54:30Z
    date copyright2001/05/01
    date issued2001
    identifier issn0022-3670
    identifier otherams-29427.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166653
    description abstractRecent results of numerical wave models have shown that the presence of a bimodal directional spreading is a robust feature at wavenumbers above the spectral peak. This directional bimodality is controlled mainly by directional transfer of energy through nonlinear wave?wave interactions. The bimodal feature has also been observed in the directional spectra derived from the spatial topography of ocean surface waves acquired by stereo-photography, image radars, and an airborne scanning lidar system. In this study, a comprehensive data analysis of the evolution of the wave directional distribution during two active wave growth periods in Lake Michigan is conducted. The wind and wave measurements are acquired by two heave?pitch?roll buoys moored at a nearshore and an offshore station. An empirical method averaging the results of the maximum likelihood method and maximum entropy method is used to estimate the directional distribution from buoy measurements. The study shows that the bimodal distribution is a distinctive and persistent feature over a broad frequency range throughout the wave growth process. The characteristics of directional bimodality are quantified by parameters related to the separation angles and the amplitudes of the sidelobes. In general, the values of the parameters are smallest near the peak frequency and increase toward both lower and higher frequencies. This frequency-dependent pattern appears to be invariant to the change of wave age throughout the wave growth process. The persistent nature of the directional bimodality indicates that the nonlinear wave?wave interaction mechanism not only actively moves wave energy away from the peak frequency into both higher and lower frequency components but also constantly redistributes wave energy into directions oblique to the wind direction. At the offshore buoy site when the wind and peak wave directions align closely, the bimodal distribution is symmetric about the wind direction. At the nearshore buoy site when the local wind and the peak wave are not moving in the same direction or the wind field is less homogeneous, the bimodal distribution is asymmetric.
    publisherAmerican Meteorological Society
    titleEvolution of the Bimodal Directional Distribution of Ocean Waves
    typeJournal Paper
    journal volume31
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2001)031<1200:EOTBDD>2.0.CO;2
    journal fristpage1200
    journal lastpage1221
    treeJournal of Physical Oceanography:;2001:;Volume( 031 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian