YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Baroclinic Rossby Waves in a Square Basin

    Source: Journal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 012::page 3161
    Author:
    LaCasce, J. H.
    DOI: 10.1175/1520-0485(2000)030<3161:BRWIAS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The properties of forced baroclinic, quasigeostrophic Rossby waves in an ocean basin are discussed, with emphasis on the apparent phase speed. The response to a traveling wave wind stress curl consists of three parts, two of which propagate westward and one that tracks the wind. The apparent phase speed in the basin interior depends on the relative sizes of the amplitudes of these three terms, which vary with forcing frequency and scale and with the size of the deformation radius. With low-frequency, large-scale forcing, one westward wave dominates and its phase speed is the long baroclinic Rossby wave speed. With smaller forcing scales, the component that tracks the wind is comparably strong, and the superposition with the dominant westward wave can produce augmented apparent phase speeds. At frequencies larger than the maximum free wave frequency (proportional to the deformation radius), the westward waves are trapped in deformation-scale boundary layers, yielding a weak, directly forced interior. The choice of boundary conditions is found to affect strongly the response. In contrast to wind forcing, forcing by an imposed boundary oscillation yields propagation at the long-wave speed over a wide range of forcing frequencies.
    • Download: (804.0Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Baroclinic Rossby Waves in a Square Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166568
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLaCasce, J. H.
    date accessioned2017-06-09T14:54:17Z
    date available2017-06-09T14:54:17Z
    date copyright2000/12/01
    date issued2000
    identifier issn0022-3670
    identifier otherams-29350.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166568
    description abstractThe properties of forced baroclinic, quasigeostrophic Rossby waves in an ocean basin are discussed, with emphasis on the apparent phase speed. The response to a traveling wave wind stress curl consists of three parts, two of which propagate westward and one that tracks the wind. The apparent phase speed in the basin interior depends on the relative sizes of the amplitudes of these three terms, which vary with forcing frequency and scale and with the size of the deformation radius. With low-frequency, large-scale forcing, one westward wave dominates and its phase speed is the long baroclinic Rossby wave speed. With smaller forcing scales, the component that tracks the wind is comparably strong, and the superposition with the dominant westward wave can produce augmented apparent phase speeds. At frequencies larger than the maximum free wave frequency (proportional to the deformation radius), the westward waves are trapped in deformation-scale boundary layers, yielding a weak, directly forced interior. The choice of boundary conditions is found to affect strongly the response. In contrast to wind forcing, forcing by an imposed boundary oscillation yields propagation at the long-wave speed over a wide range of forcing frequencies.
    publisherAmerican Meteorological Society
    titleBaroclinic Rossby Waves in a Square Basin
    typeJournal Paper
    journal volume30
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2000)030<3161:BRWIAS>2.0.CO;2
    journal fristpage3161
    journal lastpage3178
    treeJournal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian