YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Slope-Enhanced Fission of Salty Hetons under Sea Ice

    Source: Journal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 011::page 2866
    Author:
    Chao, Shenn-Yu
    ,
    Shaw, Ping-Tung
    DOI: 10.1175/1520-0485(2000)030<2866:SEFOSH>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Ocean responses to a single brine source under ice and over a sloping bottom are investigated in numerical experiments. Brine sources considered herein are often much stronger than that anticipated from a single seawater freezing event in a time span of about 10 days. The authors have no evidence that such strong sources exist in the ocean, but the consequent heton-like eddies manifest interesting features over a bottom slope. The numerical model contains a stratified ocean capped by an ice layer. The convection initially generates a top cyclone and a submerged anticyclone vertically stacked together. Under sea ice, the top cyclone dissipates in time and often breaks up into several distinct cyclonic vortices. Through heton-type couplings, the breakaway shallow cyclones are often able to tear the underlying anticyclone apart to form distinct anticyclones. Top cyclones are eventually annihilated by ice-exerted friction, leaving submerged anticyclones in stable existence. Fission from a pair of vertically stacked baroclinic vortices is a fundamental process associated with a strong brine source under sea ice. A bottom slope generally enhances fission, often increasing the number of subsurface anticyclones or causing the resulting anticyclones to break farther away from the source. The slope enhancement is consistent with the potential vorticity conservation requirement and a changing Rossby radius with water depths. The foregoing conclusions remain the same in cases with a stationary brine source moving rigidly with a uniform current. Under the less likely scenario of a stationary source embedded in a mean flow, brine waters spread downstream and become less effective in producing distinct vortices. Granting the occurrence of strong baroclinic vortices under sea ice, the preferable increase of anticyclones at depths may help explain the overwhelming predominance of submerged anticyclones in the ice-covered Arctic Ocean.
    • Download: (642.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Slope-Enhanced Fission of Salty Hetons under Sea Ice

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166558
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorChao, Shenn-Yu
    contributor authorShaw, Ping-Tung
    date accessioned2017-06-09T14:54:16Z
    date available2017-06-09T14:54:16Z
    date copyright2000/11/01
    date issued2000
    identifier issn0022-3670
    identifier otherams-29341.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166558
    description abstractOcean responses to a single brine source under ice and over a sloping bottom are investigated in numerical experiments. Brine sources considered herein are often much stronger than that anticipated from a single seawater freezing event in a time span of about 10 days. The authors have no evidence that such strong sources exist in the ocean, but the consequent heton-like eddies manifest interesting features over a bottom slope. The numerical model contains a stratified ocean capped by an ice layer. The convection initially generates a top cyclone and a submerged anticyclone vertically stacked together. Under sea ice, the top cyclone dissipates in time and often breaks up into several distinct cyclonic vortices. Through heton-type couplings, the breakaway shallow cyclones are often able to tear the underlying anticyclone apart to form distinct anticyclones. Top cyclones are eventually annihilated by ice-exerted friction, leaving submerged anticyclones in stable existence. Fission from a pair of vertically stacked baroclinic vortices is a fundamental process associated with a strong brine source under sea ice. A bottom slope generally enhances fission, often increasing the number of subsurface anticyclones or causing the resulting anticyclones to break farther away from the source. The slope enhancement is consistent with the potential vorticity conservation requirement and a changing Rossby radius with water depths. The foregoing conclusions remain the same in cases with a stationary brine source moving rigidly with a uniform current. Under the less likely scenario of a stationary source embedded in a mean flow, brine waters spread downstream and become less effective in producing distinct vortices. Granting the occurrence of strong baroclinic vortices under sea ice, the preferable increase of anticyclones at depths may help explain the overwhelming predominance of submerged anticyclones in the ice-covered Arctic Ocean.
    publisherAmerican Meteorological Society
    titleSlope-Enhanced Fission of Salty Hetons under Sea Ice
    typeJournal Paper
    journal volume30
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2000)030<2866:SEFOSH>2.0.CO;2
    journal fristpage2866
    journal lastpage2882
    treeJournal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian