YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Comparison of Two Classical Advection Schemes in a General Circulation Model

    Source: Journal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 009::page 2439
    Author:
    Yamanaka, Yasuhiro
    ,
    Furue, Ryo
    ,
    Hasumi, Hiroyasu
    ,
    Suginohara, Nobuo
    DOI: 10.1175/1520-0485(2000)030<2439:COTCAS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The authors compare two classical advection schemes, the centered difference and weighted upcurrent, for coarse-resolution OGCMs, using an idealized ocean basin and a realistic World Ocean topography. For the idealized basin, three experiments are run, one with 12 vertical levels and the centered difference scheme, one with 12 levels and the weighted upcurrent scheme, and the other with 800 levels and the centered scheme. The last experiment perfectly satisfies the grid Péclet number stability criterion and is regarded as the ?true solution.? Comparison of the coarse vertical resolution experiments with the true solution indicates 1) that with the centered scheme, when strong vertical motion crosses a strong stratification, false density values are created in the coarse resolution model and this leads to false convective adjustment, which transports those false density values downward; and 2) that because of computational diffusion, the weighted upcurrent scheme leads to a less dense deep water with a stronger stratification than those of the true solution. These characteristics also apply even to the World Ocean model with relatively small grid Péclet numbers (moderately high vertical resolution and relatively large vertical diffusivity): the centered scheme leads to artificial convective adjustment near the surface in the equatorial Pacific, creating an artificial circulation, and the weighted upcurrent scheme leads to a warmer deep water and more diffuse thermocline. Deep equatorial ?stacked jets? are found in all idealized-basin experiments, in particular, in the super-high vertical resolution case. Horizontal diffusion is found to dominate the density balance at the bottom jet in the super-high-resolution model, as previously found in an OGCM with a moderately high vertical resolution. This is consistent with the hypothesis that the jets exist owing to diapycnal mixing.
    • Download: (416.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Comparison of Two Classical Advection Schemes in a General Circulation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166537
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorYamanaka, Yasuhiro
    contributor authorFurue, Ryo
    contributor authorHasumi, Hiroyasu
    contributor authorSuginohara, Nobuo
    date accessioned2017-06-09T14:54:13Z
    date available2017-06-09T14:54:13Z
    date copyright2000/09/01
    date issued2000
    identifier issn0022-3670
    identifier otherams-29322.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166537
    description abstractThe authors compare two classical advection schemes, the centered difference and weighted upcurrent, for coarse-resolution OGCMs, using an idealized ocean basin and a realistic World Ocean topography. For the idealized basin, three experiments are run, one with 12 vertical levels and the centered difference scheme, one with 12 levels and the weighted upcurrent scheme, and the other with 800 levels and the centered scheme. The last experiment perfectly satisfies the grid Péclet number stability criterion and is regarded as the ?true solution.? Comparison of the coarse vertical resolution experiments with the true solution indicates 1) that with the centered scheme, when strong vertical motion crosses a strong stratification, false density values are created in the coarse resolution model and this leads to false convective adjustment, which transports those false density values downward; and 2) that because of computational diffusion, the weighted upcurrent scheme leads to a less dense deep water with a stronger stratification than those of the true solution. These characteristics also apply even to the World Ocean model with relatively small grid Péclet numbers (moderately high vertical resolution and relatively large vertical diffusivity): the centered scheme leads to artificial convective adjustment near the surface in the equatorial Pacific, creating an artificial circulation, and the weighted upcurrent scheme leads to a warmer deep water and more diffuse thermocline. Deep equatorial ?stacked jets? are found in all idealized-basin experiments, in particular, in the super-high vertical resolution case. Horizontal diffusion is found to dominate the density balance at the bottom jet in the super-high-resolution model, as previously found in an OGCM with a moderately high vertical resolution. This is consistent with the hypothesis that the jets exist owing to diapycnal mixing.
    publisherAmerican Meteorological Society
    titleComparison of Two Classical Advection Schemes in a General Circulation Model
    typeJournal Paper
    journal volume30
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(2000)030<2439:COTCAS>2.0.CO;2
    journal fristpage2439
    journal lastpage2451
    treeJournal of Physical Oceanography:;2000:;Volume( 030 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian