YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Net Shortwave Fluxes over the Ocean

    Source: Journal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 012::page 3167
    Author:
    Scott, James D.
    ,
    Alexander, Michael A.
    DOI: 10.1175/1520-0485(1999)029<3167:NSFOTO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Net surface shortwave fluxes (Qsw) computed from National Aeronautics and Space Administration/Langley satellite data are compared with Qsw from reanalyses of the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centers for Environmental Prediction (NCEP). The mean and variability of Qsw is examined for the period 1983?91, with a focus on the tropical and summer hemisphere oceans during June, July, August (JJA) and December, January, February (DJF). Both reanalyses exhibit a positive bias, indicating too much sunlight is absorbed at the surface, in regions where low-level stratiform clouds are most common, but a negative bias in regions where cumuliform clouds are the dominant cloud type. The ERA has a greater intermonthly variability during JJA than the satellite data over most of the Pacific, especially north of 40°N and in the central and eastern equatorial Pacific. The NCEP variability in JJA is also larger than the satellite estimates over the North Pacific and the eastern equatorial Pacific, but is smaller over most of the western tropical and subtropical Pacific. During DJF, the ERA has more realistic variability in shortwave fluxes over the tropical oceans than the NCEP reanalysis, which underestimates the variability in the tropical Pacific and the Indian Ocean by a factor of 2. Ocean models using atmospheric forcing from reanalyses will be impacted not only by regional and seasonal Qsw biases but also by differences in Qsw variability. It is estimated that the largest impacts on SST due to differences in variability are in the North Pacific, eastern tropical Pacific, and western Atlantic during JJA and in the Indian Ocean and the tropical Pacific and Atlantic during DJF.
    • Download: (294.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Net Shortwave Fluxes over the Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166368
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorScott, James D.
    contributor authorAlexander, Michael A.
    date accessioned2017-06-09T14:53:48Z
    date available2017-06-09T14:53:48Z
    date copyright1999/12/01
    date issued1999
    identifier issn0022-3670
    identifier otherams-29170.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166368
    description abstractNet surface shortwave fluxes (Qsw) computed from National Aeronautics and Space Administration/Langley satellite data are compared with Qsw from reanalyses of the European Centre for Medium-Range Weather Forecasts (ERA) and the National Centers for Environmental Prediction (NCEP). The mean and variability of Qsw is examined for the period 1983?91, with a focus on the tropical and summer hemisphere oceans during June, July, August (JJA) and December, January, February (DJF). Both reanalyses exhibit a positive bias, indicating too much sunlight is absorbed at the surface, in regions where low-level stratiform clouds are most common, but a negative bias in regions where cumuliform clouds are the dominant cloud type. The ERA has a greater intermonthly variability during JJA than the satellite data over most of the Pacific, especially north of 40°N and in the central and eastern equatorial Pacific. The NCEP variability in JJA is also larger than the satellite estimates over the North Pacific and the eastern equatorial Pacific, but is smaller over most of the western tropical and subtropical Pacific. During DJF, the ERA has more realistic variability in shortwave fluxes over the tropical oceans than the NCEP reanalysis, which underestimates the variability in the tropical Pacific and the Indian Ocean by a factor of 2. Ocean models using atmospheric forcing from reanalyses will be impacted not only by regional and seasonal Qsw biases but also by differences in Qsw variability. It is estimated that the largest impacts on SST due to differences in variability are in the North Pacific, eastern tropical Pacific, and western Atlantic during JJA and in the Indian Ocean and the tropical Pacific and Atlantic during DJF.
    publisherAmerican Meteorological Society
    titleNet Shortwave Fluxes over the Ocean
    typeJournal Paper
    journal volume29
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1999)029<3167:NSFOTO>2.0.CO;2
    journal fristpage3167
    journal lastpage3174
    treeJournal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian