YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Dense Water Formation beneath a Time-Dependent Coastal Polynya

    Source: Journal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 004::page 807
    Author:
    Chapman, David C.
    DOI: 10.1175/1520-0485(1999)029<0807:DWFBAT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Recent modeling studies of dense water formation beneath an idealized steady coastal polynya have provided simple analytical expressions for the maximum density anomaly achievable as a function of the polynya geometry and the imposed surface buoyancy flux. These studies have assumed that the buoyancy flux and polynya geometry are both constant and independent parameters. To relax these assumptions, dense water formation is examined beneath a coastal polynya whose size and surface buoyancy flux are computed from atmospheric temperature and wind velocity according to a polynya model developed by Pease. Though highly idealized, the Pease model produces polynyas that open and close on reasonably realistic timescales, and it thermodynamically couples the polynya size and buoyancy flux. Results reveal several interesting and potentially useful features of the ocean response to time-dependent polynya forcing. First, under reasonable atmospheric conditions, both the maximum density anomaly achievable and the volume flux of dense water formed are nearly independent of polynya width and atmospheric temperature (and, therefore, surface buoyancy flux), but they are strongly dependent on the magnitude of the wind that pushes the ice offshore. Second, variations in polynya size produce horizontal gradients in surface buoyancy flux that are important in setting the scales of the ocean response. Third, timescales of the ocean response (>10 days) are typically longer than timescales associated with polynya openings and closings (a few days). Therefore, the ocean response to time-dependent polynya size and surface buoyancy flux is nearly the same as if the polynya size and surface buoyancy flux were fixed at the time average of the forcing (over 30?60 days). This suggests that reasonable estimates of dense water formed beneath Arctic polynyas may be possible by applying the simple expressions based on steady forcing, but using the seasonal averages of the parameters. Finally, it is difficult to find realistic combinations of atmospheric conditions that produce large quantities of water with density anomaly greater than about 1 kg m?3.
    • Download: (212.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Dense Water Formation beneath a Time-Dependent Coastal Polynya

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166197
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorChapman, David C.
    date accessioned2017-06-09T14:53:23Z
    date available2017-06-09T14:53:23Z
    date copyright1999/04/01
    date issued1999
    identifier issn0022-3670
    identifier otherams-29016.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166197
    description abstractRecent modeling studies of dense water formation beneath an idealized steady coastal polynya have provided simple analytical expressions for the maximum density anomaly achievable as a function of the polynya geometry and the imposed surface buoyancy flux. These studies have assumed that the buoyancy flux and polynya geometry are both constant and independent parameters. To relax these assumptions, dense water formation is examined beneath a coastal polynya whose size and surface buoyancy flux are computed from atmospheric temperature and wind velocity according to a polynya model developed by Pease. Though highly idealized, the Pease model produces polynyas that open and close on reasonably realistic timescales, and it thermodynamically couples the polynya size and buoyancy flux. Results reveal several interesting and potentially useful features of the ocean response to time-dependent polynya forcing. First, under reasonable atmospheric conditions, both the maximum density anomaly achievable and the volume flux of dense water formed are nearly independent of polynya width and atmospheric temperature (and, therefore, surface buoyancy flux), but they are strongly dependent on the magnitude of the wind that pushes the ice offshore. Second, variations in polynya size produce horizontal gradients in surface buoyancy flux that are important in setting the scales of the ocean response. Third, timescales of the ocean response (>10 days) are typically longer than timescales associated with polynya openings and closings (a few days). Therefore, the ocean response to time-dependent polynya size and surface buoyancy flux is nearly the same as if the polynya size and surface buoyancy flux were fixed at the time average of the forcing (over 30?60 days). This suggests that reasonable estimates of dense water formed beneath Arctic polynyas may be possible by applying the simple expressions based on steady forcing, but using the seasonal averages of the parameters. Finally, it is difficult to find realistic combinations of atmospheric conditions that produce large quantities of water with density anomaly greater than about 1 kg m?3.
    publisherAmerican Meteorological Society
    titleDense Water Formation beneath a Time-Dependent Coastal Polynya
    typeJournal Paper
    journal volume29
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1999)029<0807:DWFBAT>2.0.CO;2
    journal fristpage807
    journal lastpage820
    treeJournal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian