YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Effect of Rainfall on the Surface Layer during a Westerly Wind Burst in the Western Equatorial Pacific

    Source: Journal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 004::page 612
    Author:
    Wijesekera, H. W.
    ,
    Paulson, C. A.
    ,
    Huyer, A.
    DOI: 10.1175/1520-0485(1999)029<0612:TEOROT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Measurements of a fresh surface anomaly (fresh lens) produced by rainfall during a westerly wind burst have been analyzed. The measurements were made in December 1992 as part of the Coupled Ocean?Atmosphere Response Experiment in the western equatorial Pacific (2°S, 156°E). Measurements included radar estimates of rainfall, upper-ocean temperature (T), salinity (S), horizontal velocity, and microstructure. In situ observations of the fresh lens were made 5 to 7 hours after its formation. In the 5 hours after formation, the lens deepened to a depth of 40 m as indicated by its salinity anomaly. Salinity and temperature were highly correlated within the lens, consistent with its initial formation by cold rainfall. The T?S relation exhibited curvature, which can be explained by surface cooling and upper-ocean mixing subsequent to formation of the lens. The lens exhibited a horizontal velocity anomaly in the direction of wind, which extended down to a depth of 40 m. The horizontal velocity anomaly is consistent with momentum being trapped near the surface due to rain-induced stratification. Vertical velocity, estimated from the divergence of zonal velocity, showed downwelling at the leading edge of the lens and upwelling at the trailing edge. The magnitude of vertical velocity at a depth of 20 m is 20 m day?1. Richardson numbers within the lens were low (0.25 to 0.5), suggesting that turbulent mixing was governed by critical-Ri instability. Wavenumber spectra of T and S in the upper 20 m exhibit a ?5/3 range, which extends to wavenumbers below the range of local isotropy. Spectral levels were used to estimate turbulent dissipation rates of T and S, which were in turn used to estimate turbulent fluxes of heat and salt. Turbulent fluxes were also estimated from microstructure observations between depths of 10 and 60 m. Fluxes within the fresh lens were nearly uniform from 2 m to 35 m depth, then decreased to near zero at 45 m. The lifetime of fresh lenses during westerly wind bursts appears to be less than one day.
    • Download: (591.7Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Effect of Rainfall on the Surface Layer during a Westerly Wind Burst in the Western Equatorial Pacific

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166185
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWijesekera, H. W.
    contributor authorPaulson, C. A.
    contributor authorHuyer, A.
    date accessioned2017-06-09T14:53:21Z
    date available2017-06-09T14:53:21Z
    date copyright1999/04/01
    date issued1999
    identifier issn0022-3670
    identifier otherams-29005.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166185
    description abstractMeasurements of a fresh surface anomaly (fresh lens) produced by rainfall during a westerly wind burst have been analyzed. The measurements were made in December 1992 as part of the Coupled Ocean?Atmosphere Response Experiment in the western equatorial Pacific (2°S, 156°E). Measurements included radar estimates of rainfall, upper-ocean temperature (T), salinity (S), horizontal velocity, and microstructure. In situ observations of the fresh lens were made 5 to 7 hours after its formation. In the 5 hours after formation, the lens deepened to a depth of 40 m as indicated by its salinity anomaly. Salinity and temperature were highly correlated within the lens, consistent with its initial formation by cold rainfall. The T?S relation exhibited curvature, which can be explained by surface cooling and upper-ocean mixing subsequent to formation of the lens. The lens exhibited a horizontal velocity anomaly in the direction of wind, which extended down to a depth of 40 m. The horizontal velocity anomaly is consistent with momentum being trapped near the surface due to rain-induced stratification. Vertical velocity, estimated from the divergence of zonal velocity, showed downwelling at the leading edge of the lens and upwelling at the trailing edge. The magnitude of vertical velocity at a depth of 20 m is 20 m day?1. Richardson numbers within the lens were low (0.25 to 0.5), suggesting that turbulent mixing was governed by critical-Ri instability. Wavenumber spectra of T and S in the upper 20 m exhibit a ?5/3 range, which extends to wavenumbers below the range of local isotropy. Spectral levels were used to estimate turbulent dissipation rates of T and S, which were in turn used to estimate turbulent fluxes of heat and salt. Turbulent fluxes were also estimated from microstructure observations between depths of 10 and 60 m. Fluxes within the fresh lens were nearly uniform from 2 m to 35 m depth, then decreased to near zero at 45 m. The lifetime of fresh lenses during westerly wind bursts appears to be less than one day.
    publisherAmerican Meteorological Society
    titleThe Effect of Rainfall on the Surface Layer during a Westerly Wind Burst in the Western Equatorial Pacific
    typeJournal Paper
    journal volume29
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1999)029<0612:TEOROT>2.0.CO;2
    journal fristpage612
    journal lastpage632
    treeJournal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian