YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Behavior of Double-Hemisphere Thermohaline Flows in a Single Basin

    Source: Journal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 003::page 382
    Author:
    Klinger, Barry A.
    ,
    Marotzke, Jochem
    DOI: 10.1175/1520-0485(1999)029<0382:BODHTF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A coarse resolution, three-dimensional numerical model is used to study how external parameters control the existence and strength of equatorially asymmetric thermohaline overturning in a large-scale, rotating ocean basin. Initially, the meridional surface density gradient is directly set to be larger in a ?dominant? hemisphere than in a ?subordinate? hemisphere. The two-hemisphere system has a broader thermocline and weaker upwelling than the same model with the dominant hemisphere only. This behavior is in accord with classical scaling arguments, providing that the continuity equation is employed, rather than the linear vorticity equation. The dominant overturning cell, analogous to North Atlantic Deep Water formation, is primarily controlled by the surface density contrast in the dominant hemisphere, which in turn is largely set by temperature. Consequently, in experiments with mixed boundary conditions, the dominant cell strength is relatively insensitive to the magnitude QS of the salinity forcing. However, QS strongly influences subordinate hemisphere properties, including the volume transport of a shallow overturning cell and the meridional extent of a tongue of low-salinity intermediate water reminiscent of Antarctic Intermediate Water. The minimum QS is identified for which the steady, asymmetric flow is stable; below this value, a steady, equatorially symmetric, temperature-dominated overturning occurs. For high salt flux, the asymmetric circulation becomes oscillatory and eventually gives way to an unsteady, symmetric, salt-dominated overturning. For given boundary conditions, it is possible to have at least three different asymmetric states, with significantly different large-scale properties. An expression for the meridional salt transport allows one to roughly predict the surface salinity and density profile and stability of the asymmetric state as a function of QS and other external parameters.
    • Download: (608.2Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Behavior of Double-Hemisphere Thermohaline Flows in a Single Basin

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166165
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorKlinger, Barry A.
    contributor authorMarotzke, Jochem
    date accessioned2017-06-09T14:53:19Z
    date available2017-06-09T14:53:19Z
    date copyright1999/03/01
    date issued1999
    identifier issn0022-3670
    identifier otherams-28989.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166165
    description abstractA coarse resolution, three-dimensional numerical model is used to study how external parameters control the existence and strength of equatorially asymmetric thermohaline overturning in a large-scale, rotating ocean basin. Initially, the meridional surface density gradient is directly set to be larger in a ?dominant? hemisphere than in a ?subordinate? hemisphere. The two-hemisphere system has a broader thermocline and weaker upwelling than the same model with the dominant hemisphere only. This behavior is in accord with classical scaling arguments, providing that the continuity equation is employed, rather than the linear vorticity equation. The dominant overturning cell, analogous to North Atlantic Deep Water formation, is primarily controlled by the surface density contrast in the dominant hemisphere, which in turn is largely set by temperature. Consequently, in experiments with mixed boundary conditions, the dominant cell strength is relatively insensitive to the magnitude QS of the salinity forcing. However, QS strongly influences subordinate hemisphere properties, including the volume transport of a shallow overturning cell and the meridional extent of a tongue of low-salinity intermediate water reminiscent of Antarctic Intermediate Water. The minimum QS is identified for which the steady, asymmetric flow is stable; below this value, a steady, equatorially symmetric, temperature-dominated overturning occurs. For high salt flux, the asymmetric circulation becomes oscillatory and eventually gives way to an unsteady, symmetric, salt-dominated overturning. For given boundary conditions, it is possible to have at least three different asymmetric states, with significantly different large-scale properties. An expression for the meridional salt transport allows one to roughly predict the surface salinity and density profile and stability of the asymmetric state as a function of QS and other external parameters.
    publisherAmerican Meteorological Society
    titleBehavior of Double-Hemisphere Thermohaline Flows in a Single Basin
    typeJournal Paper
    journal volume29
    journal issue3
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1999)029<0382:BODHTF>2.0.CO;2
    journal fristpage382
    journal lastpage399
    treeJournal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 003
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian