YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Mean Flow Evolution of a Baroclinically Unstable Potential Vorticity Front

    Source: Journal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 002::page 273
    Author:
    Boss, Emmanuel
    ,
    Thompson, Lu Anne
    DOI: 10.1175/1520-0485(1999)029<0273:MFEOAB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Quasi-linear theory and numerical models are used to study the mean flow modification of a two-layer shallow water baroclinically unstable flow as a function of Rossby number. This flow has an upper-layer potential vorticity front overlying a quiescent lower layer and is used as a simple representation of the Gulf Stream. Quantities derived from an analytical expansion in the small meander amplitude limit of the (quasi-linear) equations are found to compare quantitatively well with numerical model simulations of the flow in small amplitude and to pertain qualitatively even beyond the instability equilibration, where the meander amplitude is as large as the meander wavelength. The baroclinic evolution is similar for all Rossby numbers, with differences arising from increased asymmetry of the flow with increasing Rossby number. The equilibration of the instability is similar for all Rossby numbers and is due to the acceleration of a strong barotropic shear. This acceleration is predicted from the small amplitude analysis. Quasigeostrophic diagnostics are shown to be useful even for large Rossby number flows such as the Gulf Stream. One qualitative difference that appears is that as the mean flow is modified, a lateral separation of the zonal mean potential vorticity front and the jet maximum appears, consistent with Gulf Stream observations. This feature is found only for finite Rossby number flows.
    • Download: (242.3Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Mean Flow Evolution of a Baroclinically Unstable Potential Vorticity Front

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4166158
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBoss, Emmanuel
    contributor authorThompson, Lu Anne
    date accessioned2017-06-09T14:53:18Z
    date available2017-06-09T14:53:18Z
    date copyright1999/02/01
    date issued1999
    identifier issn0022-3670
    identifier otherams-28982.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4166158
    description abstractQuasi-linear theory and numerical models are used to study the mean flow modification of a two-layer shallow water baroclinically unstable flow as a function of Rossby number. This flow has an upper-layer potential vorticity front overlying a quiescent lower layer and is used as a simple representation of the Gulf Stream. Quantities derived from an analytical expansion in the small meander amplitude limit of the (quasi-linear) equations are found to compare quantitatively well with numerical model simulations of the flow in small amplitude and to pertain qualitatively even beyond the instability equilibration, where the meander amplitude is as large as the meander wavelength. The baroclinic evolution is similar for all Rossby numbers, with differences arising from increased asymmetry of the flow with increasing Rossby number. The equilibration of the instability is similar for all Rossby numbers and is due to the acceleration of a strong barotropic shear. This acceleration is predicted from the small amplitude analysis. Quasigeostrophic diagnostics are shown to be useful even for large Rossby number flows such as the Gulf Stream. One qualitative difference that appears is that as the mean flow is modified, a lateral separation of the zonal mean potential vorticity front and the jet maximum appears, consistent with Gulf Stream observations. This feature is found only for finite Rossby number flows.
    publisherAmerican Meteorological Society
    titleMean Flow Evolution of a Baroclinically Unstable Potential Vorticity Front
    typeJournal Paper
    journal volume29
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1999)029<0273:MFEOAB>2.0.CO;2
    journal fristpage273
    journal lastpage287
    treeJournal of Physical Oceanography:;1999:;Volume( 029 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian