YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    A Simple Model of the Decadal Response of the Ocean to Stochastic Wind Forcing

    Source: Journal of Physical Oceanography:;1997:;Volume( 027 ):;issue: 008::page 1533
    Author:
    Frankignoul, Claude
    ,
    Müller, Peter
    ,
    Zorita, Eduardo
    DOI: 10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A simple linear model is used to estimate the decadal response of the extratropical ocean to wind stress forcing, assuming a flat bottom, a mean state at rest, and no dissipation. The barotropic fields are governed by a time-dependent Sverdrup balance, the baroclinic ones by the long Rossby wave equation. The ocean is bounded by a coast in the east and a radiation condition is used in the west. At each frequency, the baroclinic response consists of a forced response plus a Rossby wave generated at the eastern boundary. For zonally independent forcing, the response propagates westward at twice the Rossby phase speed. The wind stress is assumed to be stochastic with a white frequency spectrum, so the model represents the continuous excitation of the ocean interior by the weather fluctuations. The model predicts the shape and level of the frequency spectra of the oceanic pressure field and their variation with longitude and latitude. The baroclinic response is spread over a continuum of frequencies, with a dominant timescale determined by the time it takes a long baroclinic Rossby wave to propagate across the basin and thus increases with the basin width. The predictions for zonally independent forcing are compared with the North Atlantic pressure variability in an extended integration of the ECHAM1/LSG coupled GCM. The agreement is good in the interior of the subtropical gyre, but less satisfactory in the subpolar gyre. The theory correctly predicts that the baroclinic spectra are red with a high-frequency ??2 decay that levels off at low frequency, and how this spectral shape changes with longitude as a result of varying fetch and with latitude as a result of parameter changes. The theory predicts that the barotropic frequency spectra are white, whereas the GCM spectra are slightly red. Nevertheless, it captures how the barotropic pressure spectra vary with longitude, latitude, and wind stress intensity. The baroclinic predictions for a white wind stress curl spectrum are also broadly consistent with the frequency spectrum of sea level changes and temperature fluctuations in the thermocline observed near Bermuda. Stochastic wind stress forcing may thus explain a substantial part of the decadal variability of the oceanic gyre.
    • Download: (266.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      A Simple Model of the Decadal Response of the Ocean to Stochastic Wind Forcing

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165888
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFrankignoul, Claude
    contributor authorMüller, Peter
    contributor authorZorita, Eduardo
    date accessioned2017-06-09T14:52:39Z
    date available2017-06-09T14:52:39Z
    date copyright1997/08/01
    date issued1997
    identifier issn0022-3670
    identifier otherams-28739.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165888
    description abstractA simple linear model is used to estimate the decadal response of the extratropical ocean to wind stress forcing, assuming a flat bottom, a mean state at rest, and no dissipation. The barotropic fields are governed by a time-dependent Sverdrup balance, the baroclinic ones by the long Rossby wave equation. The ocean is bounded by a coast in the east and a radiation condition is used in the west. At each frequency, the baroclinic response consists of a forced response plus a Rossby wave generated at the eastern boundary. For zonally independent forcing, the response propagates westward at twice the Rossby phase speed. The wind stress is assumed to be stochastic with a white frequency spectrum, so the model represents the continuous excitation of the ocean interior by the weather fluctuations. The model predicts the shape and level of the frequency spectra of the oceanic pressure field and their variation with longitude and latitude. The baroclinic response is spread over a continuum of frequencies, with a dominant timescale determined by the time it takes a long baroclinic Rossby wave to propagate across the basin and thus increases with the basin width. The predictions for zonally independent forcing are compared with the North Atlantic pressure variability in an extended integration of the ECHAM1/LSG coupled GCM. The agreement is good in the interior of the subtropical gyre, but less satisfactory in the subpolar gyre. The theory correctly predicts that the baroclinic spectra are red with a high-frequency ??2 decay that levels off at low frequency, and how this spectral shape changes with longitude as a result of varying fetch and with latitude as a result of parameter changes. The theory predicts that the barotropic frequency spectra are white, whereas the GCM spectra are slightly red. Nevertheless, it captures how the barotropic pressure spectra vary with longitude, latitude, and wind stress intensity. The baroclinic predictions for a white wind stress curl spectrum are also broadly consistent with the frequency spectrum of sea level changes and temperature fluctuations in the thermocline observed near Bermuda. Stochastic wind stress forcing may thus explain a substantial part of the decadal variability of the oceanic gyre.
    publisherAmerican Meteorological Society
    titleA Simple Model of the Decadal Response of the Ocean to Stochastic Wind Forcing
    typeJournal Paper
    journal volume27
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1997)027<1533:ASMOTD>2.0.CO;2
    journal fristpage1533
    journal lastpage1546
    treeJournal of Physical Oceanography:;1997:;Volume( 027 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian