YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Baroclinic Jets in Confluent Flow

    Source: Journal of Physical Oceanography:;1997:;Volume( 027 ):;issue: 006::page 1054
    Author:
    Spall, Michael A.
    DOI: 10.1175/1520-0485(1997)027<1054:BJICF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The nonlinear, three-dimensional behavior of baroclinic fronts in a barotropic deformation field is investigated. A major finding is that baroclinic instability of the frontal zone can play an important role in limiting frontogenesis forced by the large-scale deformation. This results in a statistically equilibrated state in which the front oscillates about a mean vertical shear and frontal width. This equilibration mechanism is effective over a wide range of parameter space and is relevant to a variety of fronts in both the ocean and the atmosphere. Sufficiently strong deformation fields, however, can stabilize the baroclinic jet, yielding the two-dimensional result in which the frontogenesis is ultimately limited by the model subgrid-scale mixing parameterization. The time-dependent three-dimensional equilibrated state is achieved for those cases in which perturbations can grow to sufficient amplitude such that the nonlinearities counteract the frontal steepening induced by the large-scale deformation field through the large amplitude baroclinic wave cycle and resulting heat flux. The regimes of the steady equilibrated state and the time-dependent equilibrated state are predicted well by an application of Bishop?s linear model of time-dependent wave growth. The vertical heat flux and subduction rate are dominated by the essentially two-dimensional ageostrophic circulation resulting from the large-scale deformation field, not by the eddy heat flux associated with baroclinic instability. The ageostrophic horizontal and vertical circulations, and vertical heat flux and subduction rates, are discussed and compared to various oceanic observations.
    • Download: (403.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Baroclinic Jets in Confluent Flow

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165857
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorSpall, Michael A.
    date accessioned2017-06-09T14:52:35Z
    date available2017-06-09T14:52:35Z
    date copyright1997/06/01
    date issued1997
    identifier issn0022-3670
    identifier otherams-28710.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165857
    description abstractThe nonlinear, three-dimensional behavior of baroclinic fronts in a barotropic deformation field is investigated. A major finding is that baroclinic instability of the frontal zone can play an important role in limiting frontogenesis forced by the large-scale deformation. This results in a statistically equilibrated state in which the front oscillates about a mean vertical shear and frontal width. This equilibration mechanism is effective over a wide range of parameter space and is relevant to a variety of fronts in both the ocean and the atmosphere. Sufficiently strong deformation fields, however, can stabilize the baroclinic jet, yielding the two-dimensional result in which the frontogenesis is ultimately limited by the model subgrid-scale mixing parameterization. The time-dependent three-dimensional equilibrated state is achieved for those cases in which perturbations can grow to sufficient amplitude such that the nonlinearities counteract the frontal steepening induced by the large-scale deformation field through the large amplitude baroclinic wave cycle and resulting heat flux. The regimes of the steady equilibrated state and the time-dependent equilibrated state are predicted well by an application of Bishop?s linear model of time-dependent wave growth. The vertical heat flux and subduction rate are dominated by the essentially two-dimensional ageostrophic circulation resulting from the large-scale deformation field, not by the eddy heat flux associated with baroclinic instability. The ageostrophic horizontal and vertical circulations, and vertical heat flux and subduction rates, are discussed and compared to various oceanic observations.
    publisherAmerican Meteorological Society
    titleBaroclinic Jets in Confluent Flow
    typeJournal Paper
    journal volume27
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1997)027<1054:BJICF>2.0.CO;2
    journal fristpage1054
    journal lastpage1071
    treeJournal of Physical Oceanography:;1997:;Volume( 027 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian