YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Localized Coupling between Surface and Bottom-Intensified Flow over Topography

    Source: Journal of Physical Oceanography:;1997:;Volume( 027 ):;issue: 006::page 977
    Author:
    Hallberg, Robert
    DOI: 10.1175/1520-0485(1997)027<0977:LCBSAB>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Substantial bottom topography in a basin with planetary vorticity gradients strongly affects the vertical structure of the linear topographic and planetary Rossby waves that spin up the ocean circulation. There is no barotropic mode with large amplitude topography and stratification. It is shown that the lowest frequency two-layer quasigeostrophic waves that exist with stratification, planetary vorticity gradients, and large-amplitude bottom topography are more strongly concentrated in the vertical than Burger number 1 scaling would indicate (for most orientations of the wavevector) except where the bottom slope is nearly meridional. This concentration increases with decreasing frequency. Ray tracing in an ocean basin suggests that the two layers are linearly coupled in regions with parallel or antiparallel topographic and planetary vorticity gradients, but elsewhere small amplitude motion in the two layers is largely independent. Continuity within isopycnal layers implies that most of the circulation remains within isopycnal layers, even in the regions of linear coupling. The strength of surface(bottom)-intensified flow driven by coupling to bottom(surface)-intensified flow is approximately twice as strong as the surface(bottom) projection of the bottom(surface)-intensified flow. Primitive equation simulations concur with the quasigeostrophic results and indicate that the localized linear coupling between surface- and bottom-intensified flow pertains to a continuous stratification.
    • Download: (1.654Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Localized Coupling between Surface and Bottom-Intensified Flow over Topography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165852
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHallberg, Robert
    date accessioned2017-06-09T14:52:34Z
    date available2017-06-09T14:52:34Z
    date copyright1997/06/01
    date issued1997
    identifier issn0022-3670
    identifier otherams-28706.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165852
    description abstractSubstantial bottom topography in a basin with planetary vorticity gradients strongly affects the vertical structure of the linear topographic and planetary Rossby waves that spin up the ocean circulation. There is no barotropic mode with large amplitude topography and stratification. It is shown that the lowest frequency two-layer quasigeostrophic waves that exist with stratification, planetary vorticity gradients, and large-amplitude bottom topography are more strongly concentrated in the vertical than Burger number 1 scaling would indicate (for most orientations of the wavevector) except where the bottom slope is nearly meridional. This concentration increases with decreasing frequency. Ray tracing in an ocean basin suggests that the two layers are linearly coupled in regions with parallel or antiparallel topographic and planetary vorticity gradients, but elsewhere small amplitude motion in the two layers is largely independent. Continuity within isopycnal layers implies that most of the circulation remains within isopycnal layers, even in the regions of linear coupling. The strength of surface(bottom)-intensified flow driven by coupling to bottom(surface)-intensified flow is approximately twice as strong as the surface(bottom) projection of the bottom(surface)-intensified flow. Primitive equation simulations concur with the quasigeostrophic results and indicate that the localized linear coupling between surface- and bottom-intensified flow pertains to a continuous stratification.
    publisherAmerican Meteorological Society
    titleLocalized Coupling between Surface and Bottom-Intensified Flow over Topography
    typeJournal Paper
    journal volume27
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1997)027<0977:LCBSAB>2.0.CO;2
    journal fristpage977
    journal lastpage998
    treeJournal of Physical Oceanography:;1997:;Volume( 027 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian