YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Assimilation of Geosat Altimetric Data in a Nonlinear Shallow-Water Model of the Indian Ocean by Adjoint Approach. Part II: Some Validation and Interpretation of the Assimilated Results

    Source: Journal of Physical Oceanography:;1996:;Volume( 026 ):;issue: 009::page 1735
    Author:
    Greiner, Eric
    ,
    Périgaud, Claire
    DOI: 10.1175/1520-0485(1996)026<1735:AOGADI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: This paper examines the results of assimilating Geosat sea level variations relative to the November 1986?November 1988 mean reference, in a nonlinear reduced-gravity model of the Indian Ocean. Data have been assimilated during one year starting in November 1986 with the objective of optimizing the initial conditions and the yearly averaged reference surface. The thermocline slope simulated by the model with or without assimilation is validated by comparison with the signal, which can be derived from expandable bathythermograph measurements performed in the Indian Ocean at that time. The topography simulated with assimilation on November 1986 is in very good agreement with the hydrographic data. The slopes corresponding to the South Equatorial Current and to the South Equatorial Countercurrent are better reproduced with assimilation than without during the first nine months. The whole circulation of the cyclonic gyre south of the equator is then strongly intensified by assimilation. Another assimilation experiment is run over the following year starting in November 1987. The difference between the two yearly mean surfaces simulated with assimilation is in excellent agreement with Geosat. In the southeastern Indian Ocean, the correction to the yearly mean dynamic topography due to assimilation over the second year is negatively correlated to the one the year before. This correction is also in agreement with hydro- graphic data. It is likely that the signal corrected by assimilation is not only due to wind error, because simulations driven by various wind forcings present the same features over the two years. Model simulations run with a prescribed throughflow transport anomaly indicate that assimilation is rather correcting in the interior of the model domain for inadequate boundary conditions with the Pacific.
    • Download: (996.8Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Assimilation of Geosat Altimetric Data in a Nonlinear Shallow-Water Model of the Indian Ocean by Adjoint Approach. Part II: Some Validation and Interpretation of the Assimilated Results

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165707
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorGreiner, Eric
    contributor authorPérigaud, Claire
    date accessioned2017-06-09T14:52:12Z
    date available2017-06-09T14:52:12Z
    date copyright1996/09/01
    date issued1996
    identifier issn0022-3670
    identifier otherams-28576.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165707
    description abstractThis paper examines the results of assimilating Geosat sea level variations relative to the November 1986?November 1988 mean reference, in a nonlinear reduced-gravity model of the Indian Ocean. Data have been assimilated during one year starting in November 1986 with the objective of optimizing the initial conditions and the yearly averaged reference surface. The thermocline slope simulated by the model with or without assimilation is validated by comparison with the signal, which can be derived from expandable bathythermograph measurements performed in the Indian Ocean at that time. The topography simulated with assimilation on November 1986 is in very good agreement with the hydrographic data. The slopes corresponding to the South Equatorial Current and to the South Equatorial Countercurrent are better reproduced with assimilation than without during the first nine months. The whole circulation of the cyclonic gyre south of the equator is then strongly intensified by assimilation. Another assimilation experiment is run over the following year starting in November 1987. The difference between the two yearly mean surfaces simulated with assimilation is in excellent agreement with Geosat. In the southeastern Indian Ocean, the correction to the yearly mean dynamic topography due to assimilation over the second year is negatively correlated to the one the year before. This correction is also in agreement with hydro- graphic data. It is likely that the signal corrected by assimilation is not only due to wind error, because simulations driven by various wind forcings present the same features over the two years. Model simulations run with a prescribed throughflow transport anomaly indicate that assimilation is rather correcting in the interior of the model domain for inadequate boundary conditions with the Pacific.
    publisherAmerican Meteorological Society
    titleAssimilation of Geosat Altimetric Data in a Nonlinear Shallow-Water Model of the Indian Ocean by Adjoint Approach. Part II: Some Validation and Interpretation of the Assimilated Results
    typeJournal Paper
    journal volume26
    journal issue9
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1996)026<1735:AOGADI>2.0.CO;2
    journal fristpage1735
    journal lastpage1746
    treeJournal of Physical Oceanography:;1996:;Volume( 026 ):;issue: 009
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian