YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Dynamics of the Antarctic Circumpolar Current

    Source: Journal of Physical Oceanography:;1996:;Volume( 026 ):;issue: 005::page 753
    Author:
    Ivchenko, Vladimir O.
    ,
    Richards, Kelvin J.
    ,
    Stevens, David P.
    DOI: 10.1175/1520-0485(1996)026<0753:TDOTAC>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The dynamics of the Antarctic Circumpolar Current (ACC) in a near-eddy-resolving model of the Southern Ocean (FRAM) are investigated. A streamwise coordinate system is used, rather than a more conventional approach of considering zonally averaged quantities. The motivation for this approach is the large deviation from a purely zonal flow made by the current. Comparisons are made with a zonal-mean analysis of the same model. It is found that the topographic form drag is the main sink of the momentum that is input by the wind. However, in contrast to a zonal-mean analysis other terms, namely, horizontal mixing, bottom friction, and advection of momentum, are no longer negligible. The total effect of transient eddies is to produce a drag on the mean flow, again in contrast to the zonally averaged case. The vertical penetration of stress is considered. A generalized formula is derived for the interfacial form stress averaged along a convoluted path and that includes nonquasigeostrophic effects. The interfacial form stress is found to be related not only to the local wind stress but also to changes in stratification and the Coriolis parameter along the path of integration. The vertical gradient of the extra terms is found to be proportional to the quasi-meridional velocity averaged along an isopycnic surface. Using the model data, the nonquasigeostrophic effects are found to be important, particularly toward the northern flank of the ACC. Relating the vertical shear of the flow to the interfacial form stress, it is shown that the vertical structure of the flow is set by a combination of the wind stress and the meridional overturning. There is, therefore, an intimate linking of the wind and thermohaline-driven circulations.
    • Download: (1.608Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Dynamics of the Antarctic Circumpolar Current

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165637
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorIvchenko, Vladimir O.
    contributor authorRichards, Kelvin J.
    contributor authorStevens, David P.
    date accessioned2017-06-09T14:52:03Z
    date available2017-06-09T14:52:03Z
    date copyright1996/05/01
    date issued1996
    identifier issn0022-3670
    identifier otherams-28512.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165637
    description abstractThe dynamics of the Antarctic Circumpolar Current (ACC) in a near-eddy-resolving model of the Southern Ocean (FRAM) are investigated. A streamwise coordinate system is used, rather than a more conventional approach of considering zonally averaged quantities. The motivation for this approach is the large deviation from a purely zonal flow made by the current. Comparisons are made with a zonal-mean analysis of the same model. It is found that the topographic form drag is the main sink of the momentum that is input by the wind. However, in contrast to a zonal-mean analysis other terms, namely, horizontal mixing, bottom friction, and advection of momentum, are no longer negligible. The total effect of transient eddies is to produce a drag on the mean flow, again in contrast to the zonally averaged case. The vertical penetration of stress is considered. A generalized formula is derived for the interfacial form stress averaged along a convoluted path and that includes nonquasigeostrophic effects. The interfacial form stress is found to be related not only to the local wind stress but also to changes in stratification and the Coriolis parameter along the path of integration. The vertical gradient of the extra terms is found to be proportional to the quasi-meridional velocity averaged along an isopycnic surface. Using the model data, the nonquasigeostrophic effects are found to be important, particularly toward the northern flank of the ACC. Relating the vertical shear of the flow to the interfacial form stress, it is shown that the vertical structure of the flow is set by a combination of the wind stress and the meridional overturning. There is, therefore, an intimate linking of the wind and thermohaline-driven circulations.
    publisherAmerican Meteorological Society
    titleThe Dynamics of the Antarctic Circumpolar Current
    typeJournal Paper
    journal volume26
    journal issue5
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1996)026<0753:TDOTAC>2.0.CO;2
    journal fristpage753
    journal lastpage774
    treeJournal of Physical Oceanography:;1996:;Volume( 026 ):;issue: 005
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian