YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Upper-Ocean Response to Surface Heating

    Source: Journal of Physical Oceanography:;1996:;Volume( 026 ):;issue: 004::page 466
    Author:
    Lee, Craig M.
    ,
    Rudnick, Daniel L.
    DOI: 10.1175/1520-0485(1996)026<0466:TUORTS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Moored observations of atmospheric variables and upper-ocean temperatures from the Long-Term Upper-Ocean Study (LOTUS) and the Frontal Air-Sea Interaction Experiment (FASINEX) are used to examine the upper-ocean response to surface heating. FASINEX took place between January and June 1986 at 27°N, 7°M while LOTUS took place between May and October 1982 at 34°N, 7°W. The frequency-domain transfer function between rate of change of heat and the net surface heat flux is consistent with a one-dimensional heat balance between heating and convergence of vertical turbulent heat flux at timescales longer than the inertial. The observations satisfy the vertically integrated one-dimensional heat equation and indicate that the response to surface heating has been successfully isolated. Within the internal waveband, upward phase propagation in the response is inconsistent with a one-dimensional balance and the vertically integrated heat balance fails. The internal waveband response is explained as a balance between rate of change of heat, mixing, and vertical advection. A simple model, which admits internal waves forced by an oscillatory surface buoyancy flux, illustrates the competition between these three terms. Stratification modulates the depth to which surface heating is mixed. The estimated eddy diffusivity may be considered a linear function of frequency where the scaling constant reflects the mixed layer depth.
    • Download: (1.084Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Upper-Ocean Response to Surface Heating

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165617
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLee, Craig M.
    contributor authorRudnick, Daniel L.
    date accessioned2017-06-09T14:51:59Z
    date available2017-06-09T14:51:59Z
    date copyright1996/04/01
    date issued1996
    identifier issn0022-3670
    identifier otherams-28495.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165617
    description abstractMoored observations of atmospheric variables and upper-ocean temperatures from the Long-Term Upper-Ocean Study (LOTUS) and the Frontal Air-Sea Interaction Experiment (FASINEX) are used to examine the upper-ocean response to surface heating. FASINEX took place between January and June 1986 at 27°N, 7°M while LOTUS took place between May and October 1982 at 34°N, 7°W. The frequency-domain transfer function between rate of change of heat and the net surface heat flux is consistent with a one-dimensional heat balance between heating and convergence of vertical turbulent heat flux at timescales longer than the inertial. The observations satisfy the vertically integrated one-dimensional heat equation and indicate that the response to surface heating has been successfully isolated. Within the internal waveband, upward phase propagation in the response is inconsistent with a one-dimensional balance and the vertically integrated heat balance fails. The internal waveband response is explained as a balance between rate of change of heat, mixing, and vertical advection. A simple model, which admits internal waves forced by an oscillatory surface buoyancy flux, illustrates the competition between these three terms. Stratification modulates the depth to which surface heating is mixed. The estimated eddy diffusivity may be considered a linear function of frequency where the scaling constant reflects the mixed layer depth.
    publisherAmerican Meteorological Society
    titleThe Upper-Ocean Response to Surface Heating
    typeJournal Paper
    journal volume26
    journal issue4
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1996)026<0466:TUORTS>2.0.CO;2
    journal fristpage466
    journal lastpage480
    treeJournal of Physical Oceanography:;1996:;Volume( 026 ):;issue: 004
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian