YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Depth-Integrated Vorticity Budget of the Southern Ocean from a General Circulation Model

    Source: Journal of Physical Oceanography:;1995:;Volume( 025 ):;issue: 011::page 2569
    Author:
    Wells, N. C.
    ,
    De Cuevas, B. A.
    DOI: 10.1175/1520-0485(1995)025<2569:DIVBOT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: An analysis of the depth-integrated vorticity budget of the U.K. Fine Resolution Antarctic Model is used to investigate the mechanisms that maintain and dissipate vorticity in the Antarctic Circumpolar Current (ACC) and adjacent circulations of the Southern Ocean. The individual contributions to the vorticity budget are evaluated over the last six years when the model had reached a quasi-steady state. It is shown that the primary balance in the ACC is between the curl of the wind stress and the bottom pressure torque (BPT). Regional analysis reveals that the predominant contribution to BPT is in the Drake Passage, Scotia Sea, and the Argentine Basin. The region to the south of Tasmania and New Zealand also contributes significantly to BPT in the ACC. In addition it is shown that Drake Passage and the Falkland Current are responsible for the major dissipation of the ACC. Within the ACC between 320° and 290°E, there is good correspondence between the integrated southward flow and the curl of the wind stress.
    • Download: (1.078Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Depth-Integrated Vorticity Budget of the Southern Ocean from a General Circulation Model

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165530
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorWells, N. C.
    contributor authorDe Cuevas, B. A.
    date accessioned2017-06-09T14:51:46Z
    date available2017-06-09T14:51:46Z
    date copyright1995/11/01
    date issued1995
    identifier issn0022-3670
    identifier otherams-28416.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165530
    description abstractAn analysis of the depth-integrated vorticity budget of the U.K. Fine Resolution Antarctic Model is used to investigate the mechanisms that maintain and dissipate vorticity in the Antarctic Circumpolar Current (ACC) and adjacent circulations of the Southern Ocean. The individual contributions to the vorticity budget are evaluated over the last six years when the model had reached a quasi-steady state. It is shown that the primary balance in the ACC is between the curl of the wind stress and the bottom pressure torque (BPT). Regional analysis reveals that the predominant contribution to BPT is in the Drake Passage, Scotia Sea, and the Argentine Basin. The region to the south of Tasmania and New Zealand also contributes significantly to BPT in the ACC. In addition it is shown that Drake Passage and the Falkland Current are responsible for the major dissipation of the ACC. Within the ACC between 320° and 290°E, there is good correspondence between the integrated southward flow and the curl of the wind stress.
    publisherAmerican Meteorological Society
    titleDepth-Integrated Vorticity Budget of the Southern Ocean from a General Circulation Model
    typeJournal Paper
    journal volume25
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1995)025<2569:DIVBOT>2.0.CO;2
    journal fristpage2569
    journal lastpage2582
    treeJournal of Physical Oceanography:;1995:;Volume( 025 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian