YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Artificial Skill and Validation in Meteorological Forecasting

    Source: Weather and Forecasting:;1996:;volume( 011 ):;issue: 002::page 153
    Author:
    Mielke, Paul W.
    ,
    Berry, Kenneth J.
    ,
    Landsea, Christopher W.
    ,
    Gray, William M.
    DOI: 10.1175/1520-0434(1996)011<0153:ASAVIM>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The results of a simulation study of multiple regression prediction models for meteorological forecasting are reported. The effects of sample size, amount, and severity of nonrepresentative data in the population, inclusion of noninformative predictors, and least (sum of) absolute deviations (LAD) and least (sum of) squared deviations (LSD) regression models are examined on five populations constructed from meteorological data. Artificial skill is shown to be a product of small sample size, LSD regression, and nonrepresentative data. Validation of sample results is examined, and LAD regression is found to be superior to LSD regression when sample size is small and nonrepresentative data are present.
    • Download: (184.5Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Artificial Skill and Validation in Meteorological Forecasting

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165523
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorMielke, Paul W.
    contributor authorBerry, Kenneth J.
    contributor authorLandsea, Christopher W.
    contributor authorGray, William M.
    date accessioned2017-06-09T14:51:45Z
    date available2017-06-09T14:51:45Z
    date copyright1996/06/01
    date issued1996
    identifier issn0882-8156
    identifier otherams-2841.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165523
    description abstractThe results of a simulation study of multiple regression prediction models for meteorological forecasting are reported. The effects of sample size, amount, and severity of nonrepresentative data in the population, inclusion of noninformative predictors, and least (sum of) absolute deviations (LAD) and least (sum of) squared deviations (LSD) regression models are examined on five populations constructed from meteorological data. Artificial skill is shown to be a product of small sample size, LSD regression, and nonrepresentative data. Validation of sample results is examined, and LAD regression is found to be superior to LSD regression when sample size is small and nonrepresentative data are present.
    publisherAmerican Meteorological Society
    titleArtificial Skill and Validation in Meteorological Forecasting
    typeJournal Paper
    journal volume11
    journal issue2
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(1996)011<0153:ASAVIM>2.0.CO;2
    journal fristpage153
    journal lastpage169
    treeWeather and Forecasting:;1996:;volume( 011 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian