YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Eddy Amplitudes and Fluxes in a Homogeneous Model of Fully Developed Baroclinic Instability

    Source: Journal of Physical Oceanography:;1995:;Volume( 025 ):;issue: 010::page 2285
    Author:
    Larichev, Vitaly D.
    ,
    Held, Isaac M.
    DOI: 10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A horizontally homogeneous two-layer quasigeostrophic model with imposed environmental vertical shear is used to study eddy energies and fluxes in the regime in which an inverse barotropic energy cascade excites eddies of much larger scale than the deformation radius. It is shown that the eddy potential vorticity flux, ?thickness? flux, and the extraction of energy from the background flow are dominated by the largest eddies excited by the cascade, and not by deformation-scale eddies. The role of the latter is a catalytic one of transferring the baroclinic energy cascading downscale into the barotropic mode, thereby energizing the inverse cascade. Based on this picture, scaling arguments are developed for the eddy energy level and potential vorticity flux in statistical equilibrium. The potential vorticity flux can be thought of as generated by a diffusivity of magnitude Ukd/k20, where U is the difference between the mean currents in the two layers, kd is the inverse of the deformation radius, and k0 is the wavenumber of the energy-containing eddies. This result is closely related to that proposed by Green, although the underlying dynamical picture is different.
    • Download: (1.027Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Eddy Amplitudes and Fluxes in a Homogeneous Model of Fully Developed Baroclinic Instability

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165508
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLarichev, Vitaly D.
    contributor authorHeld, Isaac M.
    date accessioned2017-06-09T14:51:42Z
    date available2017-06-09T14:51:42Z
    date copyright1995/10/01
    date issued1995
    identifier issn0022-3670
    identifier otherams-28397.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165508
    description abstractA horizontally homogeneous two-layer quasigeostrophic model with imposed environmental vertical shear is used to study eddy energies and fluxes in the regime in which an inverse barotropic energy cascade excites eddies of much larger scale than the deformation radius. It is shown that the eddy potential vorticity flux, ?thickness? flux, and the extraction of energy from the background flow are dominated by the largest eddies excited by the cascade, and not by deformation-scale eddies. The role of the latter is a catalytic one of transferring the baroclinic energy cascading downscale into the barotropic mode, thereby energizing the inverse cascade. Based on this picture, scaling arguments are developed for the eddy energy level and potential vorticity flux in statistical equilibrium. The potential vorticity flux can be thought of as generated by a diffusivity of magnitude Ukd/k20, where U is the difference between the mean currents in the two layers, kd is the inverse of the deformation radius, and k0 is the wavenumber of the energy-containing eddies. This result is closely related to that proposed by Green, although the underlying dynamical picture is different.
    publisherAmerican Meteorological Society
    titleEddy Amplitudes and Fluxes in a Homogeneous Model of Fully Developed Baroclinic Instability
    typeJournal Paper
    journal volume25
    journal issue10
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1995)025<2285:EAAFIA>2.0.CO;2
    journal fristpage2285
    journal lastpage2297
    treeJournal of Physical Oceanography:;1995:;Volume( 025 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian