YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Rectified Flow over an Elongated Topographic Feature along a Vertical Wall

    Source: Journal of Physical Oceanography:;1995:;Volume( 025 ):;issue: 010::page 2185
    Author:
    Verron, Jacques
    ,
    Renouard, Dominique
    ,
    D'Hieres, Gabriel Chabert
    ,
    Nguyen, Thong
    ,
    Didelle, Henri
    ,
    Boyer, Don L.
    DOI: 10.1175/1520-0485(1995)025<2185:RFOAET>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Alongshore oscillatory flows over an elongated topographic feature next to a vertical wall for a homogeneous, rotating fluid were investigated by means of numerical and laboratory experiments. The physical experiments were conducted in the Grenoble 13-m diameter rotating tank, in which an elongated obstacle of limited longitudinal extent was placed along the vertical sidewall. The background oscillating motion was obtained by periodically varying the platform angular velocity. Fluid motions were visualized and quantified by direct velocity measurements and particle tracking. The numerical model employed was a tridimensional model developed by Haidvogel et al. It consists of the traditional primitive equations, that is, the Navier-Stokes equations for a rotating fluid with the addition of the hydrostatic, Boussinesq, and incompressibility approximations. (The experiments described here employ the homogeneous version.) The numerical formulation uses finite differences in the horizontal and spectral representation in the vertical dimensions. Both the laboratory and numerical experiments show that in the range of dimensionless parameters considered, two distinct flow regimes, based on general properties of the rectified flow patterns observed, can be defined. It is further shown that the flow regime designation depends principally on the magnitude of the temporal Rossby number, Rot, defined as the ratio of the flow oscillation to the background rotation frequency. Good qualitative and quantitative agreement is found between the laboratory experiments and the numerical model for such observables as the spatial distribution of rectified flow patterns. Several other flow observables are defined and their relation with the system parameters delineated.
    • Download: (1.176Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Rectified Flow over an Elongated Topographic Feature along a Vertical Wall

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165502
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorVerron, Jacques
    contributor authorRenouard, Dominique
    contributor authorD'Hieres, Gabriel Chabert
    contributor authorNguyen, Thong
    contributor authorDidelle, Henri
    contributor authorBoyer, Don L.
    date accessioned2017-06-09T14:51:42Z
    date available2017-06-09T14:51:42Z
    date copyright1995/10/01
    date issued1995
    identifier issn0022-3670
    identifier otherams-28391.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165502
    description abstractAlongshore oscillatory flows over an elongated topographic feature next to a vertical wall for a homogeneous, rotating fluid were investigated by means of numerical and laboratory experiments. The physical experiments were conducted in the Grenoble 13-m diameter rotating tank, in which an elongated obstacle of limited longitudinal extent was placed along the vertical sidewall. The background oscillating motion was obtained by periodically varying the platform angular velocity. Fluid motions were visualized and quantified by direct velocity measurements and particle tracking. The numerical model employed was a tridimensional model developed by Haidvogel et al. It consists of the traditional primitive equations, that is, the Navier-Stokes equations for a rotating fluid with the addition of the hydrostatic, Boussinesq, and incompressibility approximations. (The experiments described here employ the homogeneous version.) The numerical formulation uses finite differences in the horizontal and spectral representation in the vertical dimensions. Both the laboratory and numerical experiments show that in the range of dimensionless parameters considered, two distinct flow regimes, based on general properties of the rectified flow patterns observed, can be defined. It is further shown that the flow regime designation depends principally on the magnitude of the temporal Rossby number, Rot, defined as the ratio of the flow oscillation to the background rotation frequency. Good qualitative and quantitative agreement is found between the laboratory experiments and the numerical model for such observables as the spatial distribution of rectified flow patterns. Several other flow observables are defined and their relation with the system parameters delineated.
    publisherAmerican Meteorological Society
    titleRectified Flow over an Elongated Topographic Feature along a Vertical Wall
    typeJournal Paper
    journal volume25
    journal issue10
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1995)025<2185:RFOAET>2.0.CO;2
    journal fristpage2185
    journal lastpage2203
    treeJournal of Physical Oceanography:;1995:;Volume( 025 ):;issue: 010
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian