YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Capture and Resonant Forcing of Solitary Waves by the Interaction of a Baroclinic Current with Topography

    Source: Journal of Physical Oceanography:;1994:;Volume( 024 ):;issue: 011::page 2217
    Author:
    Mitsudera, Humio
    ,
    Grimshaw, Roger
    DOI: 10.1175/1520-0485(1994)024<2217:CARFOS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The authors have demonstrated that a large amplitude, nearly stationary solitary wave can be induced either by direct resonant forcing or by the capture of a traveling wave over the forcing region, using a two-layer model in a weakly nonlinear, long-wave limit. This two-layer model consists of a thin upper layer (where the motion is relatively strong) and a deep lower layer. From this system, an evolution equation of the KdV-type is derived to describe the upper-layer motion, while the deep lower-layer motion is described by a linear long-wave vorticity equation. The authors are particularly interested in the role of baroclinic instability in the evolution of solitary waves, as well as the effects of topographic forcing and frictional dissipation. Resonant forcing occurs within a bandwidth of a detuning parameter that scales with the square root of the (nondimensional) forcing amplitude. On the other hand, the capture of traveling waves, whose amplitude is larger than a critical value, occurs when the detuning parameter is outside the resonant band, and it is in this range that multiple equilibria (coexistence of the large and small amplitude stationary states for a given parameter set) can be realized. Whether the large amplitude stationary state appears upstream or downstream from the forcing region depends on the relative importance of baroclinic energy conversion, topographic forcing, and frictional dissipation. Further, a topographic feature can trigger baroclinic instability, which can then induce not only large amplitude stationary waves but also large amplitude traveling waves going away from the forcing region. The model results are suggestive of the bimodality of Kuroshio upstream from the Izu Ridge.
    • Download: (2.037Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Capture and Resonant Forcing of Solitary Waves by the Interaction of a Baroclinic Current with Topography

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165299
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMitsudera, Humio
    contributor authorGrimshaw, Roger
    date accessioned2017-06-09T14:51:11Z
    date available2017-06-09T14:51:11Z
    date copyright1994/11/01
    date issued1994
    identifier issn0022-3670
    identifier otherams-28208.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165299
    description abstractThe authors have demonstrated that a large amplitude, nearly stationary solitary wave can be induced either by direct resonant forcing or by the capture of a traveling wave over the forcing region, using a two-layer model in a weakly nonlinear, long-wave limit. This two-layer model consists of a thin upper layer (where the motion is relatively strong) and a deep lower layer. From this system, an evolution equation of the KdV-type is derived to describe the upper-layer motion, while the deep lower-layer motion is described by a linear long-wave vorticity equation. The authors are particularly interested in the role of baroclinic instability in the evolution of solitary waves, as well as the effects of topographic forcing and frictional dissipation. Resonant forcing occurs within a bandwidth of a detuning parameter that scales with the square root of the (nondimensional) forcing amplitude. On the other hand, the capture of traveling waves, whose amplitude is larger than a critical value, occurs when the detuning parameter is outside the resonant band, and it is in this range that multiple equilibria (coexistence of the large and small amplitude stationary states for a given parameter set) can be realized. Whether the large amplitude stationary state appears upstream or downstream from the forcing region depends on the relative importance of baroclinic energy conversion, topographic forcing, and frictional dissipation. Further, a topographic feature can trigger baroclinic instability, which can then induce not only large amplitude stationary waves but also large amplitude traveling waves going away from the forcing region. The model results are suggestive of the bimodality of Kuroshio upstream from the Izu Ridge.
    publisherAmerican Meteorological Society
    titleCapture and Resonant Forcing of Solitary Waves by the Interaction of a Baroclinic Current with Topography
    typeJournal Paper
    journal volume24
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1994)024<2217:CARFOS>2.0.CO;2
    journal fristpage2217
    journal lastpage2244
    treeJournal of Physical Oceanography:;1994:;Volume( 024 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian