YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Numerical Simulation of Flow around a Tall Isolated Seamount. Part II: Resonant Generation of Trapped Waves

    Source: Journal of Physical Oceanography:;1993:;Volume( 023 ):;issue: 011::page 2373
    Author:
    Haidvogel, Dale B.
    ,
    Beckmann, Aike
    ,
    Chapman, David C.
    ,
    Lin, Ray-Qing
    DOI: 10.1175/1520-0485(1993)023<2373:NSOFAA>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A sigma-coordinate, primitive equation ocean circulation model is used to explore the problem of the remnant generation of trapped waves about a tall, circular, isolated seamount by an incident oscillatory barotropic current. The numerical solutions are used to extend prior studies into the fully nonlinear regime, and in particular to quantify and interpret the occurrence of residual circulation. Specific attention is also devoted to the dependence of the resonance and rectification mechanisms on stratification, forcing frequency, and choice of subgrid-scale viscous closure. Resonantly generated trapped waves of significant amplitude are found to occur broadly in parameter space; a precise match between the frequency of the imposed incident current and the frequency of the trapped free wave is not necessary to produce substantial excitation of the trapped wave. The maximum amplification factors produced in these numerical solutions, O(100) times the strength of the incident current, are consistent with previous studies. In the presence of nonlinear advection, strong residual currents are produced. The time-mean circulation about the seamount is dominated by a strong bottom-intensified, anticyclonic circulation closely trapped to the seamount. Maximum local time-mean current amplitudes are found to be as large as 37% of the magnitude of the propagating waves. In addition to the strong anticyclonic residual flow, there is a weaker secondary circulation in the vertical-radial plane characterized by downwelling over the top of the seamount at all depths. Maximum vertical downwelling rates of several tens of meters per day occur at the summit of the seamount. The vertical mass flux implied by this systematic downwelling is balanced by a slow radial flux of mass directed outward along the flanks of the seamount. Time-mean budgets for the radial and azimuthal components of momentum show that horizontal eddy fluxes of momentum are responsible for transporting net radial and azimuthal momentum from the far field to the upper flanks of the seamount. There, Coriolis and pressure gradient forces provide the dominant balances in the radial direction. However, the Coriolis force and viscous effects provide the primary balance for the azimuthal component.
    • Download: (1.387Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Numerical Simulation of Flow around a Tall Isolated Seamount. Part II: Resonant Generation of Trapped Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165197
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorHaidvogel, Dale B.
    contributor authorBeckmann, Aike
    contributor authorChapman, David C.
    contributor authorLin, Ray-Qing
    date accessioned2017-06-09T14:50:55Z
    date available2017-06-09T14:50:55Z
    date copyright1993/11/01
    date issued1993
    identifier issn0022-3670
    identifier otherams-28116.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165197
    description abstractA sigma-coordinate, primitive equation ocean circulation model is used to explore the problem of the remnant generation of trapped waves about a tall, circular, isolated seamount by an incident oscillatory barotropic current. The numerical solutions are used to extend prior studies into the fully nonlinear regime, and in particular to quantify and interpret the occurrence of residual circulation. Specific attention is also devoted to the dependence of the resonance and rectification mechanisms on stratification, forcing frequency, and choice of subgrid-scale viscous closure. Resonantly generated trapped waves of significant amplitude are found to occur broadly in parameter space; a precise match between the frequency of the imposed incident current and the frequency of the trapped free wave is not necessary to produce substantial excitation of the trapped wave. The maximum amplification factors produced in these numerical solutions, O(100) times the strength of the incident current, are consistent with previous studies. In the presence of nonlinear advection, strong residual currents are produced. The time-mean circulation about the seamount is dominated by a strong bottom-intensified, anticyclonic circulation closely trapped to the seamount. Maximum local time-mean current amplitudes are found to be as large as 37% of the magnitude of the propagating waves. In addition to the strong anticyclonic residual flow, there is a weaker secondary circulation in the vertical-radial plane characterized by downwelling over the top of the seamount at all depths. Maximum vertical downwelling rates of several tens of meters per day occur at the summit of the seamount. The vertical mass flux implied by this systematic downwelling is balanced by a slow radial flux of mass directed outward along the flanks of the seamount. Time-mean budgets for the radial and azimuthal components of momentum show that horizontal eddy fluxes of momentum are responsible for transporting net radial and azimuthal momentum from the far field to the upper flanks of the seamount. There, Coriolis and pressure gradient forces provide the dominant balances in the radial direction. However, the Coriolis force and viscous effects provide the primary balance for the azimuthal component.
    publisherAmerican Meteorological Society
    titleNumerical Simulation of Flow around a Tall Isolated Seamount. Part II: Resonant Generation of Trapped Waves
    typeJournal Paper
    journal volume23
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1993)023<2373:NSOFAA>2.0.CO;2
    journal fristpage2373
    journal lastpage2391
    treeJournal of Physical Oceanography:;1993:;Volume( 023 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian