YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Equatorial Ocean Response to Rapidly Translating Wind Bursts

    Source: Journal of Physical Oceanography:;1993:;Volume( 023 ):;issue: 006::page 1208
    Author:
    Eriksen, Charles C.
    DOI: 10.1175/1520-0485(1993)023<1208:EORTRT>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The response of the ocean at low latitude to idealized westerly wind bursts can be described as a wave wake composed of equatorial gravity and Rossby-gravity modes. The excited waves are those with phase speeds that match the zonal translation speed of a wind burst, typically 10 m s?1. These modes sum to produce oscillations near the local inertial frequency at each latitude, analogous to near-inertial internal gravity waves generated by moving storms at midlatitude. Linear theory predicts that typical wind burst amplitudes (stresses of 0.1 Pa) will generate substantial current oscillations [O (1 m s?1)] in the upper ocean. Response is initially confined to the region directly beneath a wind burst, after which the wake descends and refracts equatorward as a propagating beam. Waves are of sufficient amplitude to dominate shear and vertical strain in the upper ocean. Phase differences between oscillations at neighboring latitudes induce motion in the meridional-vertical plane at ever-decreasing meridional scales. Mixing associated with predicted low Richardson numbers is expected to check development of nonlinearity from vertical and meridional advection by the waves.
    • Download: (1.748Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Equatorial Ocean Response to Rapidly Translating Wind Bursts

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165108
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorEriksen, Charles C.
    date accessioned2017-06-09T14:50:43Z
    date available2017-06-09T14:50:43Z
    date copyright1993/06/01
    date issued1993
    identifier issn0022-3670
    identifier otherams-28036.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165108
    description abstractThe response of the ocean at low latitude to idealized westerly wind bursts can be described as a wave wake composed of equatorial gravity and Rossby-gravity modes. The excited waves are those with phase speeds that match the zonal translation speed of a wind burst, typically 10 m s?1. These modes sum to produce oscillations near the local inertial frequency at each latitude, analogous to near-inertial internal gravity waves generated by moving storms at midlatitude. Linear theory predicts that typical wind burst amplitudes (stresses of 0.1 Pa) will generate substantial current oscillations [O (1 m s?1)] in the upper ocean. Response is initially confined to the region directly beneath a wind burst, after which the wake descends and refracts equatorward as a propagating beam. Waves are of sufficient amplitude to dominate shear and vertical strain in the upper ocean. Phase differences between oscillations at neighboring latitudes induce motion in the meridional-vertical plane at ever-decreasing meridional scales. Mixing associated with predicted low Richardson numbers is expected to check development of nonlinearity from vertical and meridional advection by the waves.
    publisherAmerican Meteorological Society
    titleEquatorial Ocean Response to Rapidly Translating Wind Bursts
    typeJournal Paper
    journal volume23
    journal issue6
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1993)023<1208:EORTRT>2.0.CO;2
    journal fristpage1208
    journal lastpage1230
    treeJournal of Physical Oceanography:;1993:;Volume( 023 ):;issue: 006
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian