YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Downwelling-Front Instability and Eddy Formation in the Eastern Mediterranean

    Source: Journal of Physical Oceanography:;1993:;Volume( 023 ):;issue: 001::page 61
    Author:
    Feliks, Yizhak
    ,
    Ghil, Michael
    DOI: 10.1175/1520-0485(1993)023<0061:DFIAEF>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The instability of the downwelling front along the southern coast of Asia Minor is studied with a multimode quasigeostrophic model. Linear analysis shows that the most unstable wave has a length of about 100 km, The wavelength depends only very weakly on the transversal scale of the front. The wave period is larger by an order of magnitude than the e-folding time; that is, rapid local growth occurs with little propagation. The growth rate is proportional to the maximum of the speed of the downwelling westward jet. The evolution of the frontal waves can be divided into three stages. At first, the evolution is mainly due to linear instability; the second stage is characterized by closed eddy formation; and finally, isolated eddies separate from the front and penetrate into the open sea. The largest amount of available potential energy is transferred to kinetic energy and into the barotropic mode during the second, eddy-forming stage, when several dipoles develop in this mode. The formation of anticyclonic eddies is due to advection of the ridges of the unstable wave's first baroclinic mode by the barotropic dipole. The baroclinic eddies ride on the barotropic dipoles. The propagation of such dipole-rider systems is determined mainly by the evolution of the corresponding barotropic dipole. These results suggest that the warm- and salty-core eddies observed in the Eastern Mediterranean are due, at least in part, to the instability of the downwelling front along the basin's northeastern coastline. There is both qualitative and quantitative similarity between the observed and calculated eddies in their radius (35?50 km), thermal structure, and distribution along the coast.
    • Download: (1.282Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Downwelling-Front Instability and Eddy Formation in the Eastern Mediterranean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4165027
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorFeliks, Yizhak
    contributor authorGhil, Michael
    date accessioned2017-06-09T14:50:31Z
    date available2017-06-09T14:50:31Z
    date copyright1993/01/01
    date issued1993
    identifier issn0022-3670
    identifier otherams-27964.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4165027
    description abstractThe instability of the downwelling front along the southern coast of Asia Minor is studied with a multimode quasigeostrophic model. Linear analysis shows that the most unstable wave has a length of about 100 km, The wavelength depends only very weakly on the transversal scale of the front. The wave period is larger by an order of magnitude than the e-folding time; that is, rapid local growth occurs with little propagation. The growth rate is proportional to the maximum of the speed of the downwelling westward jet. The evolution of the frontal waves can be divided into three stages. At first, the evolution is mainly due to linear instability; the second stage is characterized by closed eddy formation; and finally, isolated eddies separate from the front and penetrate into the open sea. The largest amount of available potential energy is transferred to kinetic energy and into the barotropic mode during the second, eddy-forming stage, when several dipoles develop in this mode. The formation of anticyclonic eddies is due to advection of the ridges of the unstable wave's first baroclinic mode by the barotropic dipole. The baroclinic eddies ride on the barotropic dipoles. The propagation of such dipole-rider systems is determined mainly by the evolution of the corresponding barotropic dipole. These results suggest that the warm- and salty-core eddies observed in the Eastern Mediterranean are due, at least in part, to the instability of the downwelling front along the basin's northeastern coastline. There is both qualitative and quantitative similarity between the observed and calculated eddies in their radius (35?50 km), thermal structure, and distribution along the coast.
    publisherAmerican Meteorological Society
    titleDownwelling-Front Instability and Eddy Formation in the Eastern Mediterranean
    typeJournal Paper
    journal volume23
    journal issue1
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1993)023<0061:DFIAEF>2.0.CO;2
    journal fristpage61
    journal lastpage78
    treeJournal of Physical Oceanography:;1993:;Volume( 023 ):;issue: 001
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian