YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On the Formation of Antarctic Intermediate and Bottom Water in Ocean General Circulation Models

    Source: Journal of Physical Oceanography:;1992:;Volume( 022 ):;issue: 008::page 918
    Author:
    England, Matthew H.
    DOI: 10.1175/1520-0485(1992)022<0918:OTFOAI>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: A series of coarse-resolution models were integrated with a view to determining the most appropriate representation of the largest-scale water masses formed in the Southern Ocean. In particular, it was hoped that the models could realistically simulate Antarctic Bottom and Intermediate Water. The ocean model employed has a global domain with a realistic approximation of the continental outlines and bottom bathymetry. The subgrid-scale variation of bottom bathymetry is removed by spatial averaging over each grid box. The annual mean forcing at the sea surface is derived from climatological fields of temperature, salinity, and wind stress. It is found that the salinity of shelf water in the Weddell and Ross seas is critical if the model is to appropriately simulate the world's intermediate and bottom water masses. If the surface layer is too fresh in the Weddell and Ross seas, any bottom water formed adjacent to Antarctica is significantly less dense than in the real ocean. Furthermore, surface water at about 60°S (normally the region of intermediate water formation) strongly contributes to the model ocean's bottom water. This leaves the simulated bottom water too fresh and warm. On the other hand, with sufficiently salty bottom-water formed in the extreme Southern Ocean, a low-salinity tongue of intermediate water develops at 60°S. It is suggested that the sea-ice component of climate models is critical if the simulation is to capture the high-salinity shelf water and bottom-water formation adjacent to Antarctica and, in turn, allow for a realistic tongue of low-salinity Antarctic Intermediate Water (AAIW). The bathymetry of the Drake Passage is shown to determine the shape and strength of an intense meridional overturning cell in the Southern Ocean. By properly representing the northward extent of the Drake Passage, the formation and equatorward spreading of AAIW is simulated realistically. The scheme of AAIW formation obtained is quite different from the classical notion of circumpolar subduction of surface water at the polar front.
    • Download: (722.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On the Formation of Antarctic Intermediate and Bottom Water in Ocean General Circulation Models

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4164970
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorEngland, Matthew H.
    date accessioned2017-06-09T14:50:22Z
    date available2017-06-09T14:50:22Z
    date copyright1992/08/01
    date issued1992
    identifier issn0022-3670
    identifier otherams-27912.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4164970
    description abstractA series of coarse-resolution models were integrated with a view to determining the most appropriate representation of the largest-scale water masses formed in the Southern Ocean. In particular, it was hoped that the models could realistically simulate Antarctic Bottom and Intermediate Water. The ocean model employed has a global domain with a realistic approximation of the continental outlines and bottom bathymetry. The subgrid-scale variation of bottom bathymetry is removed by spatial averaging over each grid box. The annual mean forcing at the sea surface is derived from climatological fields of temperature, salinity, and wind stress. It is found that the salinity of shelf water in the Weddell and Ross seas is critical if the model is to appropriately simulate the world's intermediate and bottom water masses. If the surface layer is too fresh in the Weddell and Ross seas, any bottom water formed adjacent to Antarctica is significantly less dense than in the real ocean. Furthermore, surface water at about 60°S (normally the region of intermediate water formation) strongly contributes to the model ocean's bottom water. This leaves the simulated bottom water too fresh and warm. On the other hand, with sufficiently salty bottom-water formed in the extreme Southern Ocean, a low-salinity tongue of intermediate water develops at 60°S. It is suggested that the sea-ice component of climate models is critical if the simulation is to capture the high-salinity shelf water and bottom-water formation adjacent to Antarctica and, in turn, allow for a realistic tongue of low-salinity Antarctic Intermediate Water (AAIW). The bathymetry of the Drake Passage is shown to determine the shape and strength of an intense meridional overturning cell in the Southern Ocean. By properly representing the northward extent of the Drake Passage, the formation and equatorward spreading of AAIW is simulated realistically. The scheme of AAIW formation obtained is quite different from the classical notion of circumpolar subduction of surface water at the polar front.
    publisherAmerican Meteorological Society
    titleOn the Formation of Antarctic Intermediate and Bottom Water in Ocean General Circulation Models
    typeJournal Paper
    journal volume22
    journal issue8
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1992)022<0918:OTFOAI>2.0.CO;2
    journal fristpage918
    journal lastpage926
    treeJournal of Physical Oceanography:;1992:;Volume( 022 ):;issue: 008
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian