YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Equilibrium Spectra of Wind Waves

    Source: Journal of Physical Oceanography:;1990:;Volume( 020 ):;issue: 007::page 966
    Author:
    Banner, Michael L.
    DOI: 10.1175/1520-0485(1990)020<0966:ESOWW>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Equilibrium spectral behavior for ocean gravity wind waves has been investigated actively over the past three decades, yet fundamental problems remain in reconciling theory with observations. Predicted equilibrium spectral forms from physical models proposed recently by Kitaigorodskii and by Phillips are examined in the light of wavenumber and frequency spectra reported by several investigators. While frequency domain observations appear to support the model predictions, observed wavenumber spectra are found to differ both in the spectral dependence on wavenumber and on the wind speed. Based on observed wavenumber and frequency spectra for fetch-limited condition a model is proposed for the form of the directional wavenumber spectrum slice in the dominant wave direction. Reduced wavenumber and frequency spectra are calculated from this model, assuming an empirical spectral directional spreading function and the linear gravity wave dispersion relation. These calculations reveal the underlying influences which shape these reduced spectra. In the energy containing subrange, just above the spectral peak, the dominant influence shaping these spectra is the variation of the directional spreading function with distance from the spectral peak. For frequency spectra, at higher frequencies, the model calculations predict that the range of observed frequency spectral dependences is due primarily to the Doppler shifting from advection of the shorter waves by the orbital motion of the dominant waves, with possible additional influences of wind drift and ambient currents. Combining these results, composite calculated frequency spectra and one-dimensional wavenumber spectra show close correspondence with measured field spectra. In addition to clarifying the key processes that shape different regimes in the frequency spectrum, a refinement of the bounds of the gravity equilibrium subrange is proposed.
    • Download: (1.389Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Equilibrium Spectra of Wind Waves

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4164682
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorBanner, Michael L.
    date accessioned2017-06-09T14:49:37Z
    date available2017-06-09T14:49:37Z
    date copyright1990/07/01
    date issued1990
    identifier issn0022-3670
    identifier otherams-27653.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4164682
    description abstractEquilibrium spectral behavior for ocean gravity wind waves has been investigated actively over the past three decades, yet fundamental problems remain in reconciling theory with observations. Predicted equilibrium spectral forms from physical models proposed recently by Kitaigorodskii and by Phillips are examined in the light of wavenumber and frequency spectra reported by several investigators. While frequency domain observations appear to support the model predictions, observed wavenumber spectra are found to differ both in the spectral dependence on wavenumber and on the wind speed. Based on observed wavenumber and frequency spectra for fetch-limited condition a model is proposed for the form of the directional wavenumber spectrum slice in the dominant wave direction. Reduced wavenumber and frequency spectra are calculated from this model, assuming an empirical spectral directional spreading function and the linear gravity wave dispersion relation. These calculations reveal the underlying influences which shape these reduced spectra. In the energy containing subrange, just above the spectral peak, the dominant influence shaping these spectra is the variation of the directional spreading function with distance from the spectral peak. For frequency spectra, at higher frequencies, the model calculations predict that the range of observed frequency spectral dependences is due primarily to the Doppler shifting from advection of the shorter waves by the orbital motion of the dominant waves, with possible additional influences of wind drift and ambient currents. Combining these results, composite calculated frequency spectra and one-dimensional wavenumber spectra show close correspondence with measured field spectra. In addition to clarifying the key processes that shape different regimes in the frequency spectrum, a refinement of the bounds of the gravity equilibrium subrange is proposed.
    publisherAmerican Meteorological Society
    titleEquilibrium Spectra of Wind Waves
    typeJournal Paper
    journal volume20
    journal issue7
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1990)020<0966:ESOWW>2.0.CO;2
    journal fristpage966
    journal lastpage984
    treeJournal of Physical Oceanography:;1990:;Volume( 020 ):;issue: 007
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian