YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Large Scale, Low Frequency Variability of the 1979 FGGE Surface Buoy Drifts and Winds over the Southern Hemisphere

    Source: Journal of Physical Oceanography:;1989:;Volume( 019 ):;issue: 002::page 216
    Author:
    Large, W. G.
    ,
    Van Loon, H.
    DOI: 10.1175/1520-0485(1989)019<0216:LSLFVO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The surface response of the Southern Hemisphere's oceans to the large spatial scale, interseasonal changes in wind forcing during the FGGE year of 1979 is investigated. The primary data are the analyzed daily wind fields, and the trajectories of the FGGE drifting buoy array. The zonal wind forcing is characterized by large spatial patterns of low frequency (annual and semiannual) variability. particular attention is paid to the second harmonic, which has amplitude peaks at 35°?40° S with solstitial maxima, and amplitude peaks at 60°S with equinoctial maxima. The distinct phase change occurs at 50°S. The analysis of the drifting buoy data is guided by the wind patterns, but first the question of the current-following characteristics of the FGGE buoys is addressed. Compared to the wind, the buoy drift has even larger spatial scales, and more low frequency contributions to its intra-annual variance. Like the wind, amplitude peaks in the second harmonic of monthly mean zonal drift are found in each ocean basin sector at 40 ± 5° S and at 55° ?60° S, with a phase change at about 50° S. These wind and drift patterns extend from 30°S to antarctica, and so encompass the entire antarctic Circumpolar Current (ACC) and the poleward halves of the subtropical gyres. The results are discussed in relation to Southern Ocean dynamics and previous studies. A simple barotropic calculation shows that interseasonal changes in buoy drifts are small enough relative to the wind forcing that neither baroclinic surface enhancement nor slip error need be invoked to explain them. Latitudinal shear in zonal drift is shown to have a great deal of temporal variability implying momentum transports across the ACC, to the center or from the center of the ACC, depending on the time of year. The observed buoy drift is consistent with the view of the ACC consisting of multiple narrow cores. Furthermore, it suggests that as the latitude of the peak in zonal wind shifts with the half-year waves, different underlying cores of the ACC are accelerated to be the one with the greatest velocity. The Seasat satellite altimetric results are interpreted as capturing a half-cycle of the second harmonic, and as showing a phase change in zonal geostrophic flow at about 50°S. A second harmonic with equinoctial maxima is found in the 500 m depth pressure difference across the Drake Passage, although we find that this area is not very representative of the ACC as a whole. We propose that the semiannual signals in the winds and surface currents should be important diagnostics in coupled ocean-atmosphere models of the Southern Ocean. This wave is, however, faithfully represented only in products from daily analyzed pressure fields and in their climatological analyses, but not in atmospheric general circulation models nor in wind climatologies based on ship observatons.
    • Download: (1.497Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Large Scale, Low Frequency Variability of the 1979 FGGE Surface Buoy Drifts and Winds over the Southern Hemisphere

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4164473
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorLarge, W. G.
    contributor authorVan Loon, H.
    date accessioned2017-06-09T14:49:07Z
    date available2017-06-09T14:49:07Z
    date copyright1989/02/01
    date issued1989
    identifier issn0022-3670
    identifier otherams-27465.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4164473
    description abstractThe surface response of the Southern Hemisphere's oceans to the large spatial scale, interseasonal changes in wind forcing during the FGGE year of 1979 is investigated. The primary data are the analyzed daily wind fields, and the trajectories of the FGGE drifting buoy array. The zonal wind forcing is characterized by large spatial patterns of low frequency (annual and semiannual) variability. particular attention is paid to the second harmonic, which has amplitude peaks at 35°?40° S with solstitial maxima, and amplitude peaks at 60°S with equinoctial maxima. The distinct phase change occurs at 50°S. The analysis of the drifting buoy data is guided by the wind patterns, but first the question of the current-following characteristics of the FGGE buoys is addressed. Compared to the wind, the buoy drift has even larger spatial scales, and more low frequency contributions to its intra-annual variance. Like the wind, amplitude peaks in the second harmonic of monthly mean zonal drift are found in each ocean basin sector at 40 ± 5° S and at 55° ?60° S, with a phase change at about 50° S. These wind and drift patterns extend from 30°S to antarctica, and so encompass the entire antarctic Circumpolar Current (ACC) and the poleward halves of the subtropical gyres. The results are discussed in relation to Southern Ocean dynamics and previous studies. A simple barotropic calculation shows that interseasonal changes in buoy drifts are small enough relative to the wind forcing that neither baroclinic surface enhancement nor slip error need be invoked to explain them. Latitudinal shear in zonal drift is shown to have a great deal of temporal variability implying momentum transports across the ACC, to the center or from the center of the ACC, depending on the time of year. The observed buoy drift is consistent with the view of the ACC consisting of multiple narrow cores. Furthermore, it suggests that as the latitude of the peak in zonal wind shifts with the half-year waves, different underlying cores of the ACC are accelerated to be the one with the greatest velocity. The Seasat satellite altimetric results are interpreted as capturing a half-cycle of the second harmonic, and as showing a phase change in zonal geostrophic flow at about 50°S. A second harmonic with equinoctial maxima is found in the 500 m depth pressure difference across the Drake Passage, although we find that this area is not very representative of the ACC as a whole. We propose that the semiannual signals in the winds and surface currents should be important diagnostics in coupled ocean-atmosphere models of the Southern Ocean. This wave is, however, faithfully represented only in products from daily analyzed pressure fields and in their climatological analyses, but not in atmospheric general circulation models nor in wind climatologies based on ship observatons.
    publisherAmerican Meteorological Society
    titleLarge Scale, Low Frequency Variability of the 1979 FGGE Surface Buoy Drifts and Winds over the Southern Hemisphere
    typeJournal Paper
    journal volume19
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1989)019<0216:LSLFVO>2.0.CO;2
    journal fristpage216
    journal lastpage232
    treeJournal of Physical Oceanography:;1989:;Volume( 019 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian