YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Hydraulic Control of Flows with Nonuniform Potential Vorticity

    Source: Journal of Physical Oceanography:;1987:;Volume( 017 ):;issue: 011::page 2016
    Author:
    Pratt, Lawrence J.
    ,
    Armi, Laurence
    DOI: 10.1175/1520-0485(1987)017<2016:HCOFWN>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The hydraulics of flow contained in a channel and having nonuniform potential vorticity is considered from a general standpoint. The channel cross section is rectangular and the potential vorticity is assumed to be prescribed in terms of the streamfunction. We show that the general computational problem can be expressed in two traditional forms, the first of which consists of an algebraic relation between the channel geometry and a single dependent flow variable and the second of which consists of a pair of quasi-linear differential equations relating the geometry to two dependent flow variables. From these forms we derive a general ?branch condition? indicating a merger of different solutions having the same flow rate and energy and show that this condition implies that the flow is critical with respect to a certain long wave. It is shown that critical flow can occur only at the sill in a channel of constant width (with one exception) at a point of width extremum in a flat bottom channel. We also discuss the situation in which the fluid becomes detached from one of sidewalls. An example is given in which the potential vorticity is a linear function of the streamfunction and the rotation rate is zero, a case which can be solved analytically. When the potential vorticity gradient points downstream, allowing propagation of potential vorticity waves against the flow, multiple pairs of steady states are possible, each having a unique modal structure. Critical control of the higher-mode solutions is primarily over vorticity, rather than depth. Flow reversals arise in some situations, possible invalidating the prescription of potential vorticity.
    • Download: (1.045Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Hydraulic Control of Flows with Nonuniform Potential Vorticity

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4164265
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPratt, Lawrence J.
    contributor authorArmi, Laurence
    date accessioned2017-06-09T14:48:38Z
    date available2017-06-09T14:48:38Z
    date copyright1987/11/01
    date issued1987
    identifier issn0022-3670
    identifier otherams-27278.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4164265
    description abstractThe hydraulics of flow contained in a channel and having nonuniform potential vorticity is considered from a general standpoint. The channel cross section is rectangular and the potential vorticity is assumed to be prescribed in terms of the streamfunction. We show that the general computational problem can be expressed in two traditional forms, the first of which consists of an algebraic relation between the channel geometry and a single dependent flow variable and the second of which consists of a pair of quasi-linear differential equations relating the geometry to two dependent flow variables. From these forms we derive a general ?branch condition? indicating a merger of different solutions having the same flow rate and energy and show that this condition implies that the flow is critical with respect to a certain long wave. It is shown that critical flow can occur only at the sill in a channel of constant width (with one exception) at a point of width extremum in a flat bottom channel. We also discuss the situation in which the fluid becomes detached from one of sidewalls. An example is given in which the potential vorticity is a linear function of the streamfunction and the rotation rate is zero, a case which can be solved analytically. When the potential vorticity gradient points downstream, allowing propagation of potential vorticity waves against the flow, multiple pairs of steady states are possible, each having a unique modal structure. Critical control of the higher-mode solutions is primarily over vorticity, rather than depth. Flow reversals arise in some situations, possible invalidating the prescription of potential vorticity.
    publisherAmerican Meteorological Society
    titleHydraulic Control of Flows with Nonuniform Potential Vorticity
    typeJournal Paper
    journal volume17
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1987)017<2016:HCOFWN>2.0.CO;2
    journal fristpage2016
    journal lastpage2029
    treeJournal of Physical Oceanography:;1987:;Volume( 017 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian