YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Simulation of the Seasonal Cycle of the Tropical Pacific Ocean

    Source: Journal of Physical Oceanography:;1987:;Volume( 017 ):;issue: 011::page 1986
    Author:
    Philander, S. G. H.
    ,
    Hurlin, W. J.
    ,
    Seigel, A. D.
    DOI: 10.1175/1520-0485(1987)017<1986:SOTSCO>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: In a general circulation model of the tropical Pacific Ocean forced with climatological seasonally varying winds, equatorial upwelling and downwelling in adjacent latitudes play central roles in closing the oceanic circulation. The transport of the eastward North Equatorial Countercurrent decreases in a downstream direction because fluid is lost to downwelling into the thermocline where there is equatorward motion. Although this fluid converges onto the Equatorial Undercurrent, the latter's transport decreases because of equatorial upwelling. The upwelling, on the other hand, enhances the transport of the westward South Equatorial Current. Seasonally, the Countercurrent and South Equatorial Current are intense during the Northern Hemisphere summer and fall, at which time the thermocline has a pronounced trough near 3°N and a ridge near 10°N, and are weak in the spring when latitudinal thermal gradients are small and when the southeast trades are relatively weak. These variations are out of phase with those of the Equatorial Undercurrent, which is most intense in the spring. The seasonal changes are associated with considerable variations in the meridional heat transport, especially across 9°N. The heat transport is always towards the winter hemisphere. During the northern winter, Ekman drift in the central Pacific affects the northward transport of warm surface waters. During the northern summer, when the ITCZ is near 9°N and the winds there are weak, the Ekman drift across 9°N is small. The relatively steady southward flow of warm surface waters across 9°N in the far western Pacific now contributes significantly to the southward heat transport. Seasonally there is both this meridional and a zonal redistribution of warm surface waters in the upper tropical Pacific Ocean. The zonal redistribution, from west to east, contributes to high sea surface temperatures in the east in April when the Equatorial Undercurrent surges eastward and attains its highest speed and transport during the period of weak southeast tradewinds. Increased heat flux across the ocean surface at this time also contributes to the warming of the upper equatorial ocean. Seasonal wind variations west of the dateline have little effect on the eastern tropical Pacific in the model.
    • Download: (1.429Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Simulation of the Seasonal Cycle of the Tropical Pacific Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4164263
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorPhilander, S. G. H.
    contributor authorHurlin, W. J.
    contributor authorSeigel, A. D.
    date accessioned2017-06-09T14:48:38Z
    date available2017-06-09T14:48:38Z
    date copyright1987/11/01
    date issued1987
    identifier issn0022-3670
    identifier otherams-27276.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4164263
    description abstractIn a general circulation model of the tropical Pacific Ocean forced with climatological seasonally varying winds, equatorial upwelling and downwelling in adjacent latitudes play central roles in closing the oceanic circulation. The transport of the eastward North Equatorial Countercurrent decreases in a downstream direction because fluid is lost to downwelling into the thermocline where there is equatorward motion. Although this fluid converges onto the Equatorial Undercurrent, the latter's transport decreases because of equatorial upwelling. The upwelling, on the other hand, enhances the transport of the westward South Equatorial Current. Seasonally, the Countercurrent and South Equatorial Current are intense during the Northern Hemisphere summer and fall, at which time the thermocline has a pronounced trough near 3°N and a ridge near 10°N, and are weak in the spring when latitudinal thermal gradients are small and when the southeast trades are relatively weak. These variations are out of phase with those of the Equatorial Undercurrent, which is most intense in the spring. The seasonal changes are associated with considerable variations in the meridional heat transport, especially across 9°N. The heat transport is always towards the winter hemisphere. During the northern winter, Ekman drift in the central Pacific affects the northward transport of warm surface waters. During the northern summer, when the ITCZ is near 9°N and the winds there are weak, the Ekman drift across 9°N is small. The relatively steady southward flow of warm surface waters across 9°N in the far western Pacific now contributes significantly to the southward heat transport. Seasonally there is both this meridional and a zonal redistribution of warm surface waters in the upper tropical Pacific Ocean. The zonal redistribution, from west to east, contributes to high sea surface temperatures in the east in April when the Equatorial Undercurrent surges eastward and attains its highest speed and transport during the period of weak southeast tradewinds. Increased heat flux across the ocean surface at this time also contributes to the warming of the upper equatorial ocean. Seasonal wind variations west of the dateline have little effect on the eastern tropical Pacific in the model.
    publisherAmerican Meteorological Society
    titleSimulation of the Seasonal Cycle of the Tropical Pacific Ocean
    typeJournal Paper
    journal volume17
    journal issue11
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1987)017<1986:SOTSCO>2.0.CO;2
    journal fristpage1986
    journal lastpage2002
    treeJournal of Physical Oceanography:;1987:;Volume( 017 ):;issue: 011
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian