contributor author | Pratt, L. J. | |
contributor author | Stern, Melvin E. | |
date accessioned | 2017-06-09T14:47:56Z | |
date available | 2017-06-09T14:47:56Z | |
date copyright | 1986/06/01 | |
date issued | 1986 | |
identifier issn | 0022-3670 | |
identifier other | ams-27025.pdf | |
identifier uri | http://onlinelibrary.yabesh.ir/handle/yetl/4163985 | |
description abstract | The formation and detachment of quasi-geostrophic eddies in a 1½ layer jet is studied using a piecewise uniform potential vorticity model. A vorticity front separates the two pieces, and thus the jet has cusplike character. The evolution of large amplitude initial disturbance (whose origin may be attributed to barotropic-baroclinic instability mechanisms not explicit in our model) is computed by the method of contour dynamics. Certain numerical results such as the steepening of the front prior to eddy detachment can be physically explained in terms of differential mean field advection and vortex induction. Computations are made for a variety of initial conditions and we indicate the amplitude/scale conditions necessary for the detachment of an eddy. The discussion is directed to the problem of the formation of warm/cold rings in the Gulf Stream. The effect of a coast on large perturbations of a jet is also briefly discussed. | |
publisher | American Meteorological Society | |
title | Dynamics of Potential Vorticity Fronts and Eddy Detachment | |
type | Journal Paper | |
journal volume | 16 | |
journal issue | 6 | |
journal title | Journal of Physical Oceanography | |
identifier doi | 10.1175/1520-0485(1986)016<1101:DOPVFA>2.0.CO;2 | |
journal fristpage | 1101 | |
journal lastpage | 1120 | |
tree | Journal of Physical Oceanography:;1986:;Volume( 016 ):;issue: 006 | |
contenttype | Fulltext | |