YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    On Tidal Damping in Laplace's Global Ocean

    Source: Journal of Physical Oceanography:;1986:;Volume( 016 ):;issue: 002::page 377
    Author:
    Miles, John W.
    DOI: 10.1175/1520-0485(1986)016<0377:OTDILG>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Laplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the operator and eigenvalues are complex with imaginary parts are O(E½), where E = ?/2?h2 (? is the vertical component of the kinematic eddy viscosity, ? the rotational speed of the Earth, and h the depth of the global ocean). The imaginary part of the eigenvalue is expressed as a quadratic integral of the corresponding Hough function. The Q for a free oscillation is expressed as the ratio of two quadratic integrals that represent the mean energy and dissipation rates. Approximate calculations for the semidiurnal tides (with azimuthal wave number 2) are given.
    • Download: (331.1Kb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      On Tidal Damping in Laplace's Global Ocean

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4163915
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorMiles, John W.
    date accessioned2017-06-09T14:47:47Z
    date available2017-06-09T14:47:47Z
    date copyright1986/02/01
    date issued1986
    identifier issn0022-3670
    identifier otherams-26963.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4163915
    description abstractLaplace's tidal equations are augmented by dissipation in a bottom boundary layer that is intermediate in character between those of Ekman and Stokes. Laplace's tidal equation for a global ocean remains second-order and self-adjoint, but the operator and eigenvalues are complex with imaginary parts are O(E½), where E = ?/2?h2 (? is the vertical component of the kinematic eddy viscosity, ? the rotational speed of the Earth, and h the depth of the global ocean). The imaginary part of the eigenvalue is expressed as a quadratic integral of the corresponding Hough function. The Q for a free oscillation is expressed as the ratio of two quadratic integrals that represent the mean energy and dissipation rates. Approximate calculations for the semidiurnal tides (with azimuthal wave number 2) are given.
    publisherAmerican Meteorological Society
    titleOn Tidal Damping in Laplace's Global Ocean
    typeJournal Paper
    journal volume16
    journal issue2
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1986)016<0377:OTDILG>2.0.CO;2
    journal fristpage377
    journal lastpage381
    treeJournal of Physical Oceanography:;1986:;Volume( 016 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian