YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    •   YE&T Library
    • AMS
    • Journal of Physical Oceanography
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    Radiating Instabilities of Thin Baroclinic Jets

    Source: Journal of Physical Oceanography:;1983:;Volume( 013 ):;issue: 012::page 2161
    Author:
    Talley, L. D.
    DOI: 10.1175/1520-0485(1983)013<2161:RIOTBJ>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: The linear stability of thin, quasi-geostrophic, two-layer zonal jets on the ?-plane is considered. The meridional structure of the jets is approximated in such a way as to allow an exact dispersion relation to be found. Necessary conditions for instability and energy integrals are extended to these piece-wise continuous profiles. The linearly unstable modes which arise can be related directly to instabilities arising from the vertical and horizontal shear. It is found empirically that the necessary conditions for instability are sufficient for the cases considered. Attention is focused on unstable modes that penetrate far into the locally stable ocean interior and which are found when conditions allow the jet instability phase speeds to overlap the far-field. free-wave phase speeds. These radiating instabilities exist in addition to more unstable waves which are trapped within a few deformation radii of the jet. The growth rates of the radiating instabilities depend strongly on the size of the overlap of instability and free-wave phase speeds. The extreme cases of this are westward jets which have vigorously growing, radiating instabilities and purely eastward jets which do not radiate at all. Radiating instabilities are divided into two types: a subset of the jets' main unstable waves near marginal stability and instabilities which appear to be destabilized free waves of the interior ocean. It is suggested that the fully developed field of instabilities of a zonal current consists of the most unstable, trapped waves directly in the current with a shift to less unstable, radiating waves some distance from the current. A brief comparison of the model results with observations south of the Gulf Stream is made.
    • Download: (1.446Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      Radiating Instabilities of Thin Baroclinic Jets

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4163531
    Collections
    • Journal of Physical Oceanography

    Show full item record

    contributor authorTalley, L. D.
    date accessioned2017-06-09T14:46:51Z
    date available2017-06-09T14:46:51Z
    date copyright1983/12/01
    date issued1983
    identifier issn0022-3670
    identifier otherams-26617.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4163531
    description abstractThe linear stability of thin, quasi-geostrophic, two-layer zonal jets on the ?-plane is considered. The meridional structure of the jets is approximated in such a way as to allow an exact dispersion relation to be found. Necessary conditions for instability and energy integrals are extended to these piece-wise continuous profiles. The linearly unstable modes which arise can be related directly to instabilities arising from the vertical and horizontal shear. It is found empirically that the necessary conditions for instability are sufficient for the cases considered. Attention is focused on unstable modes that penetrate far into the locally stable ocean interior and which are found when conditions allow the jet instability phase speeds to overlap the far-field. free-wave phase speeds. These radiating instabilities exist in addition to more unstable waves which are trapped within a few deformation radii of the jet. The growth rates of the radiating instabilities depend strongly on the size of the overlap of instability and free-wave phase speeds. The extreme cases of this are westward jets which have vigorously growing, radiating instabilities and purely eastward jets which do not radiate at all. Radiating instabilities are divided into two types: a subset of the jets' main unstable waves near marginal stability and instabilities which appear to be destabilized free waves of the interior ocean. It is suggested that the fully developed field of instabilities of a zonal current consists of the most unstable, trapped waves directly in the current with a shift to less unstable, radiating waves some distance from the current. A brief comparison of the model results with observations south of the Gulf Stream is made.
    publisherAmerican Meteorological Society
    titleRadiating Instabilities of Thin Baroclinic Jets
    typeJournal Paper
    journal volume13
    journal issue12
    journal titleJournal of Physical Oceanography
    identifier doi10.1175/1520-0485(1983)013<2161:RIOTBJ>2.0.CO;2
    journal fristpage2161
    journal lastpage2181
    treeJournal of Physical Oceanography:;1983:;Volume( 013 ):;issue: 012
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian