YaBeSH Engineering and Technology Library

    • Journals
    • PaperQuest
    • YSE Standards
    • YaBeSH
    • Login
    View Item 
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    •   YE&T Library
    • AMS
    • Weather and Forecasting
    • View Item
    • All Fields
    • Source Title
    • Year
    • Publisher
    • Title
    • Subject
    • Author
    • DOI
    • ISBN
    Advanced Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Archive

    The Fleet Numerical Oceanography Center Suite of Oceanographic Models and Products

    Source: Weather and Forecasting:;1992:;volume( 007 ):;issue: 002::page 307
    Author:
    Clancy, R. M.
    ,
    Sadler, W. D.
    DOI: 10.1175/1520-0434(1992)007<0307:TFNOCS>2.0.CO;2
    Publisher: American Meteorological Society
    Abstract: Fleet Numerical Oceanography Center (FLENUMOCEANCEN) is the navy's real-time prediction center for global-scale and open-ocean regional-scale oceanographic products, having filled this role for over 25 years. FLENUMOCEANCEN provides operational oceanographic services to U.S. and allied naval forces, other components of the Department of Defense, and a wide variety of civilian interests with output from sophisticated ocean models. These models are highly automated and most are linked closely to atmospheric models. Thermal structure and circulation models provide a representation of the three-dimensional mass and current structure on global coarse-resolution grids and regional eddy-resolving grids. Primary attention is focused on nowcasting ocean thennal structure using optimum interpolation analysis of ship, buoy, hathy, and satellite data. In addition, ocean feature models and synthetic subsurface data are used in conjunction with surface front and eddy locations, inferred primarily from satellite imagery, to provide a sharper subsurface depiction of the ocean mesoscale, which is generally unresolved by the available in situ data. Mixed-layer and circulation models are also employed to improve the thermal structure nowcasts, provide thermal structure forecasts, and produce ocean current forecasts. Sea-ice models predict the thickness, concentration, and drift of ice in the Arctic basin and marginal seas, with surface winds and heat fluxes as their primary input. These models include ice dynamics and thermodynamics, and are updated from subjective analyses of ice concentration. Wave models predict directional ocean wave energy spectra from only wind input, simply carrying the spectra forward in time from day to day without any updating from oceanographic observations. A variety of more familiar products, such as significant wave height and primary wave direction and period, are derived from the spectra. This article gives an overview of FLENUMOCEANCEN ocean-modeling capabilities and identifies goals for the future.
    • Download: (1.701Mb)
    • Show Full MetaData Hide Full MetaData
    • Item Order
    • Go To Publisher
    • Price: 5000 Rial
    • Statistics

      The Fleet Numerical Oceanography Center Suite of Oceanographic Models and Products

    URI
    http://yetl.yabesh.ir/yetl1/handle/yetl/4163378
    Collections
    • Weather and Forecasting

    Show full item record

    contributor authorClancy, R. M.
    contributor authorSadler, W. D.
    date accessioned2017-06-09T14:46:30Z
    date available2017-06-09T14:46:30Z
    date copyright1992/06/01
    date issued1992
    identifier issn0882-8156
    identifier otherams-2648.pdf
    identifier urihttp://onlinelibrary.yabesh.ir/handle/yetl/4163378
    description abstractFleet Numerical Oceanography Center (FLENUMOCEANCEN) is the navy's real-time prediction center for global-scale and open-ocean regional-scale oceanographic products, having filled this role for over 25 years. FLENUMOCEANCEN provides operational oceanographic services to U.S. and allied naval forces, other components of the Department of Defense, and a wide variety of civilian interests with output from sophisticated ocean models. These models are highly automated and most are linked closely to atmospheric models. Thermal structure and circulation models provide a representation of the three-dimensional mass and current structure on global coarse-resolution grids and regional eddy-resolving grids. Primary attention is focused on nowcasting ocean thennal structure using optimum interpolation analysis of ship, buoy, hathy, and satellite data. In addition, ocean feature models and synthetic subsurface data are used in conjunction with surface front and eddy locations, inferred primarily from satellite imagery, to provide a sharper subsurface depiction of the ocean mesoscale, which is generally unresolved by the available in situ data. Mixed-layer and circulation models are also employed to improve the thermal structure nowcasts, provide thermal structure forecasts, and produce ocean current forecasts. Sea-ice models predict the thickness, concentration, and drift of ice in the Arctic basin and marginal seas, with surface winds and heat fluxes as their primary input. These models include ice dynamics and thermodynamics, and are updated from subjective analyses of ice concentration. Wave models predict directional ocean wave energy spectra from only wind input, simply carrying the spectra forward in time from day to day without any updating from oceanographic observations. A variety of more familiar products, such as significant wave height and primary wave direction and period, are derived from the spectra. This article gives an overview of FLENUMOCEANCEN ocean-modeling capabilities and identifies goals for the future.
    publisherAmerican Meteorological Society
    titleThe Fleet Numerical Oceanography Center Suite of Oceanographic Models and Products
    typeJournal Paper
    journal volume7
    journal issue2
    journal titleWeather and Forecasting
    identifier doi10.1175/1520-0434(1992)007<0307:TFNOCS>2.0.CO;2
    journal fristpage307
    journal lastpage327
    treeWeather and Forecasting:;1992:;volume( 007 ):;issue: 002
    contenttypeFulltext
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian
     
    DSpace software copyright © 2002-2015  DuraSpace
    نرم افزار کتابخانه دیجیتال "دی اسپیس" فارسی شده توسط یابش برای کتابخانه های ایرانی | تماس با یابش
    yabeshDSpacePersian